Разнообразие окраски водорослей объясняется


Сайт учителей биологии МБОУ Лицей № 2 города Воронежа

Многообразие водорослей

 

Водоросли – очень древняя группа организмов на Земле. За время существования у водорослей возникло множество форм строения, особенностей в размножении и расселении на нашей планете. Всего насчитывают около 30 тыс. видов водорослей.

По особенностям строения и окраске таллома различают зеленые, красные, золотистые, бурые, диатомовые и другие водоросли.

Зеленые водоросли. Среди них есть одноклеточные и многоклеточные. К ним относят хлореллу, ульву, спирогиру, хламидомонаду, улотрикс.

В роде хламидомонада – более 500 видов. Почти все они обитатели мелких, хорошо прогреваемых и сильно загрязненных водоемов. Наряду с автотрофным способом питания все представители хламидомонады всасывают всей поверхностью растворенные в воде органические вещества, способствуя очищению загрязненных вод. Такая способность этих водорослей позволяет использовать их в очистных сооружениях.

В прудах, озерах, заводях рек часто можно увидеть плавающую на поверхности воды скользкую зеленую тину. Если рассмотреть тину под микроскопом, то можно увидеть, что она образована большим скоплением тончайших зеленых нитей. Это – многоклеточная нитчатая водоросль спирогира. В слегка загрязненных водах морских побережий, например Черного моря, произрастает ярко-зеленая водоросль ульва, плоский волнистый таллом которой в ширину достигает 20 см. Многие народы используют ульву в пищу под названием "морской салат".

Выполните виртуальную лабораторную работу "Изучение многоклеточной водоросли спирогиры"

К отделу зелёных водорослей относятся и некоторые колониальные формы – вольвокс, эудорина, пандорина. Отдельные их клетки построены по типу хламидомонады, но при размножении клетки не расходятся, а срастаются своими оболочками или остаются соединёнными общей слизью. Они широко распространены в стоячих водоёмах, где также вызывают цветение воды. Наиболее высокоорганизован вольвокс. В его колонии уже наблюдается некоторая специализация клеток.

Если для зелёных водорослей обычной средой являются пресные водоёмы, то абсолютное большинство бурых и красных образуют настоящие леса и заросли именно в солёной воде. Живут они и в зоне приливов-отливов, где подолгу остаются без воды и переживают удары волн, и на довольно значительной глубине, куда почти не проникают солнечные лучи.

 Интерактивный урок-тренажёр "Отдел Зелёные водоросли".

(Пройдите все страницы урока и выполните все задания)

Бурые водоросли – это крупные, многоклеточные растения. Свое название получили из-за окраски таллома. В клетках этих водорослей помимо хлорофилла присутствуют и другие пигменты.

В большинстве своем бурые водоросли растут прикрепленными к твердому грунту или к другим водорослям, отличаясь этим от других водорослей. Для прикрепления к грунту им служат особые выросты слоевища – ризоиды, представляющие собой длинные корнеподобные разрастания. Бурые водоросли бывают однолетними и многолетними. Например, у ламинарии многолетними являются ризоиды и стволик, а длинная лентовидная (пластинчатая) часть таллома – однолетняя. Она ежегодно отрастает вновь от стволика.

Бурые водоросли могут размножаться вегетативно. С помощью двужгутиковых спор – бесполым путём. Из спор вырастают особи, на которых образуются половые клетки – гаметы. После оплодотворения зигота даёт начало водоросли, на которой будут образовываться споры. Следовательно, для бурых водорослей свойственно чередование двух поколений – полового и бесполого.

Бурые водоросли – один из основных источников органических веществ в прибрежной зоне океанов и морей.

В их зарослях, подобных подводному лесу, укрываются, находят пищу и кислород многочисленные животные. Многие бурые водоросли идут в пищу человеку, используются в промышленности, применяются на корм скоту и как удобрение.

Красные водоросли, или багрянки. Набор разных пигментов в сочетании с хлорофиллом определяет окраску багрянок – от ярко-красной до голубовато-зеленой и желтой. Это очень древняя группа водорослей. Поэтому они имеют некоторые отличия от других, более «молодых»отделов. По длине красные водоросли уступают бурым (не более 2 м). Сочетание разных пигментов багрянок придаёт им окраску от ярко-красной до голубоватой и жёлтой. Размножение красных водорослей (бесполое и половое) – процесс более сложный и многообразный, чем у других отделов. Багрянки удивительно приспособились к жизни в прибрежной зоне. Здесь они промываются не только морской, но и пресной водой, промерзают зимой, высыхают во время отлива. Но наступает прилив, и они оживают. Именно багрянки могут выжить на скалах, где постоянно действует прибой. Слоевище багрянок растёт много лет и имеет самые разные формы: пластинчатые, кустистые, нитевидные. Наиболее известна морская водоросль порфира. Размножается она только половым путём.

Интерактивный урок-тренажёр. (Выполните все задания урока)

Значение водорослей в природе велико. Они поглощают солнечные лучи, проникающие на значительную глубину, и образуют органические вещества. При этом в воду выделяется кислород, а из воды поглощается углекислый газ.

Бурые водоросли – один из основных источников органического вещества в прибрежной зоне. Их биомасса может достигать десятков килограммов на квадратный метр. Заросли бурых водорослей служат укрытием, местом размножения и питания прибрежных животных. Они же создают условия для поселения других, более мелких водорослей. Чарльз Дарвин писал о макроцистисе грушевидном, который занимает то же положение в южных морях, что и ламинария в северных: «Эти огромные подводные леса я могу сравнить только с наземными лесами тропических областей. И всё-таки, если бы в какой-нибудь стране уничтожить лес, то не думаю, чтобы при этом погибло хотя бы приблизительно такое количество видов животных, как с уничтожением этой водоросли».

Человек широко использует водоросли. В медицине – раньше только для получения йода, а сейчас – при изготовлении заменителей крови, препаратов, способствующих выведению радиоактивных веществ из организма, в хирургии. Жители Японии и Дальнего Востока издавна используют в пищу ламинарию. Однако ещё большее значение приобрели сегодня эти водоросли в промышленности.

Из водорослей получают химические вещества, необходимые при изготовлении таблеток, диабетических продуктов; в производстве пластмасс, синтетических волокон, смол, красок, бумаги, взрывчатых веществ. Добавление их небольшого количества повышает качество долгохранящихся продуктов (консервов, мороженого, соков). Бурые водоросли используют в животноводстве и растениеводстве. Бурые водоросли содержат йод и другие микроэлементы, поэтому из них приготовляют кормовую муку – добавку в корм для сельскохозяйственных животных. Благодаря этому сокращается падёж скота, повышается продуктивность, в молоке и яйцах увеличивается содержание йода. Порфиру можно использовать в пищу. В Японии её специально разводят.

Красные водоросли идут на получение агар-агара. Его добавляют в хлеб, чтобы тот не черствел, из него изготовляют пастилу, желе, мармелад. Агар-агар – лучшая среда для выращивания микроорганизмов. Из агара делают капсулы и таблетки с антибиотиками, витаминами. Из красных водорослей получают йод. Из багрянок вместе с другими водорослями производят муку, которая идёт на корм скоту и как удобрение. Красные водоросли растут во всех морях Мирового океана, но особенно значительна их роль в тропиках, где они превосходят по численности бурые и зелёные водоросли. В жизни моря они играют роль, аналогичную бурым и зелёным.

Кроме многоклеточных, довольно крупных водорослей, в Мировом океане обитает огромное количество микроскопических водорослей. Вместе со спорами многоклеточных водорослей они образуют фитопланктон (от греч. phyton – растение и plankton – блуждающий). Он населяет поверхностные, хорошо освещённые слои воды. Это основной производитель органических веществ, начальное звено большинства пищевых цепей в водоёме.

В пресных водоёмах место красных водорослей и спор бурых в фитопланктоне занимают зелёные водоросли.

Водоросли – низшие растения, имеющие одноклеточное и многоклеточное строение. Низшими их называют потому, что их тело не дифференцировано на поглощающую и фотосинтезирующую части, как это наблюдается у всех других представителей царства растений. Водоросли – один из древнейших представителей организмов, гигантский источник кислорода, органических веществ и энергии для всего живого мира. Они содержат много ценных веществ, используемых в промышленности, сельском хозяйстве, медицине и в питании людей. Водоросли представляют собой большую ценность нашей планеты.

< Предыдущая страница "Водоросли"

Следующая страница "Лишайники" >

От чего зависит цвет водорослей

Цвет водорослей

Цвет водорослей далеко не всегда зеленый, как у наземных растений: они бывают розовыми, ярко-красными, вишневыми, бордовыми, лиловыми, желтыми, голубовато-зелеными, оливково-зелеными, бурыми и даже черными. В целом по окраске выделяют 3 большие группы макрофитов: зеленые, бурые, красные. Цветовое разнообразие водорослей связно с тем, что наряду с хлорофиллами они содержат и другие пигменты – каротиноиды и фикобилины.

Эти до-полнительные пигменты способны поглощать энергию лучей солнечного света, недоступных хлорофиллу. Например, водоросли, обитающие на глубинах, куда проникает свет преимущественно зелено-голубой части спектра, имеют дополнительный красный пигмент фикоэритрин; он поглощает энергию именно этих сине-зеленых световых волн и передает ее клеткам, содержащим хлорофилл, где она используется для синтеза сахаров в процессе фотосинтеза. Фикоэритрин придает водорослям красный цвет. Каротиноиды активны преимущественно в более коротковолновой сине-зеленой части спектра ; они придают водорослям желтовато-бурый цвет. Наличие тех или иных пигментов или же их одновременное присутствие в макрофите, но в различных соотношениях, и обусловливает все разнообразие цветовых оттенков у водорослей.

Рост водорослей

Рост водорослей зависит в первую очередь от света, который ограничивает глубину их обитания. За свет даже в хорошо освещенных местах между растениями идет жесткая конкуренция, которая порой не обходится без курьезов, когда, например, более крупные водоросли алярии вытесняются значительно более мелкими ламинариями. Происходит это потому, что в начале своего развития молодые, еще невысокие растения алярий заслоняются ламинариями, их развитие угнетается, и доминирующими водорослями становятся ламинарии. Если же секаторами удалить все растения ламинарий, то алярии вновь разрастутся. Но и между водорослями одного вида тоже наблюдается борьба за свет, если «листва» их становится слишком густой. Тогда молодые растения могут поселяться только по краям густых скоплений родителей-спорофитов либо ждать, пока в зарослях взрослых растений не появится свободное место.

Помимо хорошей освещенности макрофитам для нормального роста необходимо еще и движение воды, обеспечивающее приток к ним питательных веществ (в основном азота и фосфора) и кислорода. К тому же движение воды ограничивает поселение на водорослях растительноядных животных. Однако слишком сильное течение может оторвать водоросли от субстрата, к которому они прикреплены (грунта, камней, створок раковин и т.д.), или же привести к повреждению самого растения.

Рост и развитие водорослей во многом зависит от температуры. Она определяет, например, в какой момент слоевища водорослей из микроскопических разовьются в макроскопические или когда макрофиты начнут готовиться к размножению. Например, у некоторых видов ламинарии органы размножения закладываются только при температуре ниже + 10оС, причем достаточно, чтобы она продержалась в течение всего лишь одной ночи! Температура ускоряет или замедляет темпы роста и развития отдельных видов, что обусловливает конкурентную борьбу между ними.

Присутствие растительноядных животных (брюхоногих моллюсков, морских ежей, ракообразных, рыб) также является фактором, влияющим на жизнь водорослей. В рассказе о морских ежах мы уже говорили, как уничтожение касатками каланов привело к чрезмерному размножению морских ежей, которыми питались каланы; а ежи, биомасса которых за 10 лет выросла в 8 раз, «съели» бурые водоросли, понизив их биомассу за эти годы в 12 раз! Такое же положение наблюдалось и у берегов Канады: при активном вылове омаров, питающихся морскими ежами, существенно уменьшались размеры зарослей ламинариевых водорослей. Поэтому довольно часто глубина обитания водорослей зависит от присутствия морских ежей. Некоторые виды водорослей чувствительны даже к присутствию собственных сородичей, но другого вида. Например, фукусы обычно растут в зоне, которая обнажается во время отлива, – глубже грунт занят другими водорослями. В Арктике же, где число видов водорослей уменьшается, фукусовые растут и глубже. То же самое наблюдается и в сильно опресненном Балтийском море.

В настоящее время в некоторых бухтах исчезают крупные морские водоросли. Это – результат загрязнения воды. Дело в том, что в такой среде быстро развиваются микроскопические водоросли – они обрастают проростки более крупных водорослей и губят их, т.к. часто проростки талломов крупных водорослей по размерам не превосходят своих «губителей».

Виды водорослей и названия

Самыми разнообразными среди прикрепленных водорослей являются красные – количество их видов превышает 4 000! А самыми крупными – бурые (их насчитывается около 1500 видов): в спокойных водах ламинария и макроцистис достигают в длину соответственно более 100 и 200 м. Кстати, макроцистис является «рекордсменом» среди водорослей по скорости роста: в день его слоевища вырастают на 30 см.

К бурым водорослям принадлежат и саргассы, среди которых есть формы, прикрепленные ко дну и неприкрепленные, плавающие. Эти плавающие водоросли населяют громадную область в Атлантическом океане – Саргассово море, не имеющее границ. Колумб назвал его Травяным морем, т.к. «16 сентября 1492 г., когда над океаном взошло солнце, моряки эскадры Колумба увидели море, до горизонта покрытое водорослями». Саргассовым же оно было названо потому, что водоросли со множеством шаровидных образований напоминали виноградные грозди (португальское слово «саргасо» означает сорт мелкого винограда). Первоначально считали, что саргассы – это оторванные от берегов прибрежные водоросли, унесенные течением. Но исследования показали, что водоросли Саргассового моря значительно отличаются от обитателей прибрежных вод Америки, Африки и Европы. Отличаются и живущие среди плавающих саргас различные виды червей, рачков, крабов и рыб. Есть предположение, что плавающие саргассы и обитающие среди них животные произошли от предков, живших на побережье легендарной Атлантиды.

Водоросли – наиболее «урожайные» растения на Земле. За год они (микро- и макрофиты) производят продукции по крайней мере в 10 раз больше, чем наземная флора! Продукция же только макроводорослей составляет 150 т зеленой массы с 1 га. А в прибрежных водах Мурмана эта цифра для ламинарий, фукусов и др. водорослей достигает в среднем даже 200 т с 1 га! Суточный же прирост крупных водорослей – 30-50 г на 1 кг. И эти цифры мы должны воспринимать не как отвлеченные, а как имеющие самое непосредственное отношение к нашей (каждого индивидуально и общества в целом) жизни. Ведь водоросли – живая аптека, о которой знали наши далекие предки. Мы же – дети технического прогресса (и химии) – напрочь забыли об этом.

Одна старинная легенда повествует о том, как герой древнего Шумера Гильгамеш еще более 3000 лет тому назад пытался найти волшебную траву жизни, делающую человека бессмертным. Он нашел ее на дне моря, но, к сожалению, ему не удалось сберечь ее. Древние греки подметили, что у сражающихся в море раны заживали быстрее, чем у сражавшихся на суше. В Китае, где искусство врачевания морскими растениями насчитывает свыше 4000 лет, водоросли с успехом применяют для лечения нарывов, водянки, зоба, сосудистых заболеваний.

ПОЧЕМУ ЛУЧИ СИНЕЙ ЧАСТИ СПЕКТРА ДОСТИГАЮТ БОЛЬШИХ ГЛУБИН, НЕЖЕЛИ КРАСНОЙ?

Из альгологии, раздела ботаники, посвященному всему, что касается водорослей, мы можем узнать, что водоросли разных отделов способны обитать на разных глубинах водоемов. Так, зеленые водоросли встречаются обычно на глубине в несколько метров. Бурые водоросли могут жить на глубинах до 200 метров.

Красные водоросли

Красные водоросли — до 268 метров.

Там же, в книгах и учебниках по альгологии, вы найдете объяснение этим фактам, устанавливающее взаимосвязь между цветом пигментов в составе клеток водорослей и предельной глубиной обитания. Объяснение примерно следующее.

Спектральные компоненты солнечного света пронизывают воду на разную глубину.

Красные лучи проникают лишь в верхние слои, а синие — значительно глубже. Для функционирования хлорофилла необходим красный свет. Именно поэтому зеленые водоросли не могут жить на больших глубинах. В составе клеток бурых водорослей присутствует пигмент, позволяющий осуществлять фотосинтез при желто-зеленом свете. И потому порог обитания этого отдела достигает 200 м. Что касается красных водорослей, то пигмент в их составе использует зеленый и синий цвета, что и позволяет им жить глубже всех.

Но соответствует ли данное объяснение действительности?

Давайте попробуем разобраться.

В клетках водорослей отдела Зеленых преобладает пигмент хлорофилл.

Именно поэтому данный тип водорослей окрашен в различные оттенки зеленого.

В красных водорослях очень много пигмента фикоэритрина, характеризующегося красным цветом. Этот пигмент и придает данному отделу этих растений соответствующий цвет.

В бурых водорослях присутствует пигмент фукоксантин – бурого цвета.

То же самое можно сказать о водорослях других цветов – желто-зеленых, сине-зеленых.

В каждом случае цвет определяется каким-то пигментом или их сочетанием.

Теперь о том, что такое пигменты и для чего они нужны клетке.

Пигменты требуются для фотосинтеза. Фотосинтез – это процесс разложения воды и углекислого газа с последующим построением из водорода, углерода и кислорода всевозможных видов органических соединений.

Пигменты накапливают солнечную энергию (фотоны солнечного происхождения). Эти фотоны как раз используются для разложения воды и углекислого газа. Сообщение этой энергии – это своего рода точечный нагрев мест соединения элементов в молекулах.

Пигменты накапливают все виды солнечных фотонов, которые достигают Земли и проходят сквозь атмосферу. Ошибкой было бы считать, что пигменты «работают» только с фотонами видимого спектра.

Они накапливают также инфракрасные и радио фотоны. Когда световые лучи не заслоняются на своем пути различными плотными и жидкими телами, большее число фотонов в составе этих лучей достигает обогреваемое тело, в данном случае водоросль.

Фотоны (энергия) нужны для точечного разогрева. Чем больше глубина водоема, тем меньше энергии достигает, тем больше фотонов поглощается на пути.

Пигменты разного цвета способны задерживать – аккумулировать на себе – разное количество фотонов, приходящих со световыми лучами. И не только приходящих с лучами, но и движущихся диффузно – от атома к атому, от молекулы к молекуле – вниз, под действием притяжения планеты.

Фотоны видимого диапазона выступают только в качестве своего рода «маркеров». Эти видимые фотоны указывают нам цвет пигмента. И одновременно сообщают этим особенности Силового Поля этого пигмента. Цвет пигмента нам об этом и «говорит». Т.е. Поле Притяжения преобладает или Поле Отталкивания, и какова величина того или другого. Вот и выходит, в соответствии с этой теорией, что пигменты красного цвета должны иметь наибольшее по величине Поле Притяжения – иначе говоря, наибольшую относительную массу.

А все потому, что фотоны красного цвета, как обладающие Полями Отталкивания, сложнее всего удержать в составе элемента – притяжением. Красный цвет вещества как раз нам и указывает на то, что фотоны такого цвета в достаточном количестве накапливаются на поверхности его элементов – не говоря о фотонах всех остальных цветов.

Такой способностью – удерживать больше энергии на поверхности – как раз и обладает названный ранее пигмент фикоэритрин.

Что касается пигментов других цветов, то качественно-количественный состав аккумулируемого ими на поверхности солнечного излучения будет несколько иным, нежели у пигментов красного цвета. К примеру, хлорофилл, обладающий зеленой окраской, будет накапливать в своем составе меньше солнечной энергии, чем фикоэритрин.

На этот факт нам как раз и указывает его зеленый цвет. Зеленый – комплексный. Он складывается из самых «тяжелых» желтых видимых фотонов и самых «легких» синих. В ходе своего инерционного движения те и другие оказываются в равны условиях. Величина их Силы Инерции равная. И потому они совершенно одинаково подчиняются в ходе своего движения одним и тем же объектам с Полями Притяжения, воздействующим на них своим притяжением.

Это означает, что в фотонах синего и желтого цвета, формирующим вкупе зеленый, возникает по отношению к одному и тому же химическому элементу одна и та же по величине Сила Притяжения.

Здесь следует отвлечься и пояснить один важный момент.

Цвет веществ в том виде, в каком он нам знаком по окружающему миру – т.е. как испускание видимых фотонов в ответ на падение (не только видимых фотонов, и не только фотонов, но и других типов элементарных частиц) – явление достаточно уникальное.

Оно возможно лишь благодаря тому, что в составе небесного тела, обогреваемого более крупным небесным телом (породившим его), происходит постоянное течение всех этих свободных частиц от периферии к центру. К примеру, наше Солнце испускает частицы. Они достигают атмосферы Земли и движутся вниз – прямыми лучами или диффузно (от элемента к элементу). Диффузно распространяющиеся частицы ученые именуют «электричеством».

Все это было сказано для того, чтобы пояснить, почему фотоны разных цветов – синие и желтые обладают одинаковой Силой Инерции.

Но Силой Инерции могут обладать лишь движущиеся фотоны. А это означает, что в каждый момент времени по поверхности любого химического элемента в составе освещаемого небесного тела движутся свободные частицы.

Они проходят транзитом – от периферии небесного тела к его центру. Т.е. состав поверхностных слоев любого химического элемента постоянно обновляется.

Сказанное совершенно справедливо для фотонов двух других комплексных цветов – фиолетового и оранжевого.

И это еще не все объяснение.

Любой химический элемент устроен точно по образу любого небесного тела.

В этом и заключается истинный смысл «планетарной модели атома», а вовсе не в том, что электроны летают по орбитам как планеты вокруг Солнца. Никакие электроны в элементах не летают! Любой химический элемент – это совокупность слоев элементарных частиц – простейших (неделимых) и комплексных.

Также как любое небесное тело – это последовательность слоев химических элементов. Т.е. комплексные (нестабильные) элементарные частицы в химических элементах выполняют ту же функцию, что и химические элементы в составе небесных тел. И точно также как в составе небесного тела более тяжелые элементы располагаются ближе к центру, а более легкие – ближе к периферии, Так же и в любом химическом элементе.

Ближе к периферии располагаются более тяжелые элементарные частицы. А ближе центру – более тяжелые. Это же правило распространяется на частицы, транзитно проходящие по поверхности элементов. Более тяжелые, чья Сила Инерции меньше, ныряют глубже к центру. А те, что легче и чья Сила Инерции больше, образуют более поверхностные текучие слои. Это означает, что если химический элемент красного цвета, то его верхний слой из фотонов видимого диапазона образован красными фотонами.

А под этим слоем располагаются фотоны всех остальных пяти цветов – по нисходящей – оранжевый, желтый, зеленый, синий и фиолетовый.

Если же цвет химического элемента зеленый, то это означает, что верхний слой его видимых фотонов представлен фотонами, дающими зеленый цвет.

А вот слоев желтого, оранжевого и красного цветов у него нет или практически нет.

Повторим – более тяжелые химические элементы обладают способностью удерживать более легкие элементарные частицы – красного цвета, например.

Таким образом, не совсем корректно говорить, что для фотосинтеза одних водорослей нужна одна цветовая гамма, а для фотосинтеза других – другая. Точнее сказать, взаимосвязь между цветом пигментов и предельной глубиной обитания прослежена верно.

Однако объяснение верно не до конца. Энергия, требующаяся водорослям для фотосинтеза, состоит не только из видимых фотонов. Не следует забывать про ИК и радио фотоны, а также УФ. Все эти виды частиц (фотонов) требуются и используются растениями при фотосинтезе. А вовсе не так – хлорофиллу нужные преимущественно красные видимые фотоны, фукоксантину – желтые и образующие зеленый цвет, а фикоэритрину – синие и зеленые.

Вовсе нет.

Ученые совершенно верно установили факт, что световые лучи синего и зеленого цветов способны достигать в большем количественном составе больших глубин, нежели желтые лучи, и тем более – красные. Причина все та же – разная по величине Сила Инерции фотонов.

Среди частиц Физического Плана, как известно, в состоянии покоя только у красных есть Поле Отталкивания.

У желтых и синих вне состояния движения – Поле Притяжения. Поэтому инерционное движение только у красных может длиться бесконечно. Желтые и синие с течением времени останавливаются. И чем меньше Сила Инерции, тем быстрее произойдет остановка. Т. е. световой поток желтого цвета тормозится медленнее зеленого, а зеленый – не так быстро, как синего. Однако, как известно, в естественных условиях монохроматического света не бывает. В световом луче смешаны частицы разного качества – разных подуровней Физического Плана и различных цветов.

И в таком смешанном световом луче частицы Ян поддерживают инерционное движение частиц Инь. А частицы Инь, соответственно, тормозят Ян. Большой процент частиц какого-то одного качества несомненно сказывается на общей скорости светового потока и на средней величине Силы Инерции.

Фотоны проникают в толщу воды, двигаясь либо диффузно, либо прямолинейно.

Диффузное движение — это движение под действием Сил Притяжения химически элементов, в среде которых происходит движение. Т.е. фотоны передаются от элемента к элементу, но при этом общее направление их перемещения остается все тем же – в сторону центра небесного тела. При этом сохраняется инерционный компонент их движения.

Однако траектория их движения постоянно контролируется окружающими элементами. Вся совокупность движущихся фотонов (солнечных) образует своего рода газовые атмосферы химических элементов – как у небесных тел – планет.

Для того чтобы понять, что представляют из себя химические элементы, вы должны чаще обращаться к книгам по астрономии.

Поскольку аналогия между небесными телами и элементами полнейшая. Фотоны скользят в этих «газовых оболочках», постоянно сталкиваясь друг с другом, притягиваясь и отталкиваясь – т.е. ведут себя в точности как газы атмосферы Земли.

Таким образом, фотоны движутся вследствие действия в них двух Сил – Инерции и Притяжения (к центру небесного тела и к элементам, в среде которых они движутся).

В каждый момент времени движения любого фотона, чтобы узнать направление и величину суммарной силы, следует пользоваться Правилом Параллелограмма.

Фотоны красного цвета слабо поглощаются средой, в которой движутся.

Причина – их Поля Отталкивания в состоянии покоя. Из-за этого у них велика Сила Инерции. Стакиваясь с химическими элементами, они с большей вероятностью отскакивают, нежели притягиваются.

Именно поэтому меньшее число красных фотонов проникает в водную толщу по сравнению с фотонами других цветов. Они отражаются.

Фотоны синего цвета, напротив, способны проникать глубже фотонов других цветов. Их Сила Инерции наименьшая. При столкновении с химическими элементами они тормозятся – их Сила Инерции уменьшается. Они тормозятся и притягиваются элементами – поглощаются. Именно это – поглощение вместо отражения – позволяет большему числу синих фотонов проникать вглубь водной толщи.

Сделаем вывод.

В альгологии неверно используется для объяснения зависимости между цветом пигментов и глубиной обитания верно подмеченный факт – разная способность проникать в водную толщу фотонов разного цвета.

Что касается цветов, то вещества, окрашенные в красный, обладают большей массой (притягивают сильнее), нежели вещества, окрашенные в любой другой цвет.

Вещества, окрашенные в фиолетовый, обладают наименьшей массой (наименьшим притяжением).

ПОЧЕМУ ЛУЧИ СИНЕЙ ЧАСТИ СПЕКТРА ДОСТИГАЮТ БОЛЬШИХ ГЛУБИН, НЕЖЕЛИ КРАСНОЙ?

Из альгологии, раздела ботаники, посвященному всему, что касается водорослей, мы можем узнать, что водоросли разных отделов способны обитать на разных глубинах водоемов. Так, зеленые водоросли встречаются обычно на глубине в несколько метров.

Бурые водоросли могут жить на глубинах до 200 метров. Красные водоросли — до 268 метров.

Там же, в книгах и учебниках по альгологии, вы найдете объяснение этим фактам, устанавливающее взаимосвязь между цветом пигментов в составе клеток водорослей и предельной глубиной обитания. Объяснение примерно следующее.

Спектральные компоненты солнечного света пронизывают воду на разную глубину. Красные лучи проникают лишь в верхние слои, а синие — значительно глубже.

Для функционирования хлорофилла необходим красный свет. Именно поэтому зеленые водоросли не могут жить на больших глубинах. В составе клеток бурых водорослей присутствует пигмент, позволяющий осуществлять фотосинтез при желто-зеленом свете. И потому порог обитания этого отдела достигает 200 м. Что касается красных водорослей, то пигмент в их составе использует зеленый и синий цвета, что и позволяет им жить глубже всех.

Но соответствует ли данное объяснение действительности?

Давайте попробуем разобраться.

В клетках водорослей отдела Зеленых преобладает пигмент хлорофилл. Именно поэтому данный тип водорослей окрашен в различные оттенки зеленого.

В красных водорослях очень много пигмента фикоэритрина, характеризующегося красным цветом.

Этот пигмент и придает данному отделу этих растений соответствующий цвет.

В бурых водорослях присутствует пигмент фукоксантин – бурого цвета.

То же самое можно сказать о водорослях других цветов – желто-зеленых, сине-зеленых. В каждом случае цвет определяется каким-то пигментом или их сочетанием.

Теперь о том, что такое пигменты и для чего они нужны клетке.

Пигменты требуются для фотосинтеза.

Фотосинтез – это процесс разложения воды и углекислого газа с последующим построением из водорода, углерода и кислорода всевозможных видов органических соединений. Пигменты накапливают солнечную энергию (фотоны солнечного происхождения). Эти фотоны как раз используются для разложения воды и углекислого газа.

Сообщение этой энергии – это своего рода точечный нагрев мест соединения элементов в молекулах.

Пигменты накапливают все виды солнечных фотонов, которые достигают Земли и проходят сквозь атмосферу. Ошибкой было бы считать, что пигменты «работают» только с фотонами видимого спектра.

Они накапливают также инфракрасные и радио фотоны. Когда световые лучи не заслоняются на своем пути различными плотными и жидкими телами, большее число фотонов в составе этих лучей достигает обогреваемое тело, в данном случае водоросль. Фотоны (энергия) нужны для точечного разогрева. Чем больше глубина водоема, тем меньше энергии достигает, тем больше фотонов поглощается на пути.

Пигменты разного цвета способны задерживать – аккумулировать на себе – разное количество фотонов, приходящих со световыми лучами.

И не только приходящих с лучами, но и движущихся диффузно – от атома к атому, от молекулы к молекуле – вниз, под действием притяжения планеты.

Фотоны видимого диапазона выступают только в качестве своего рода «маркеров». Эти видимые фотоны указывают нам цвет пигмента. И одновременно сообщают этим особенности Силового Поля этого пигмента. Цвет пигмента нам об этом и «говорит». Т.е. Поле Притяжения преобладает или Поле Отталкивания, и какова величина того или другого. Вот и выходит, в соответствии с этой теорией, что пигменты красного цвета должны иметь наибольшее по величине Поле Притяжения – иначе говоря, наибольшую относительную массу.

А все потому, что фотоны красного цвета, как обладающие Полями Отталкивания, сложнее всего удержать в составе элемента – притяжением. Красный цвет вещества как раз нам и указывает на то, что фотоны такого цвета в достаточном количестве накапливаются на поверхности его элементов – не говоря о фотонах всех остальных цветов. Такой способностью – удерживать больше энергии на поверхности – как раз и обладает названный ранее пигмент фикоэритрин.

Что касается пигментов других цветов, то качественно-количественный состав аккумулируемого ими на поверхности солнечного излучения будет несколько иным, нежели у пигментов красного цвета.

К примеру, хлорофилл, обладающий зеленой окраской, будет накапливать в своем составе меньше солнечной энергии, чем фикоэритрин. На этот факт нам как раз и указывает его зеленый цвет.

Зеленый – комплексный. Он складывается из самых «тяжелых» желтых видимых фотонов и самых «легких» синих. В ходе своего инерционного движения те и другие оказываются в равны условиях. Величина их Силы Инерции равная. И потому они совершенно одинаково подчиняются в ходе своего движения одним и тем же объектам с Полями Притяжения, воздействующим на них своим притяжением.

Это означает, что в фотонах синего и желтого цвета, формирующим вкупе зеленый, возникает по отношению к одному и тому же химическому элементу одна и та же по величине Сила Притяжения.

Здесь следует отвлечься и пояснить один важный момент.

Цвет веществ в том виде, в каком он нам знаком по окружающему миру – т.е. как испускание видимых фотонов в ответ на падение (не только видимых фотонов, и не только фотонов, но и других типов элементарных частиц) – явление достаточно уникальное.

Оно возможно лишь благодаря тому, что в составе небесного тела, обогреваемого более крупным небесным телом (породившим его), происходит постоянное течение всех этих свободных частиц от периферии к центру.

К примеру, наше Солнце испускает частицы. Они достигают атмосферы Земли и движутся вниз – прямыми лучами или диффузно (от элемента к элементу). Диффузно распространяющиеся частицы ученые именуют «электричеством». Все это было сказано для того, чтобы пояснить, почему фотоны разных цветов – синие и желтые обладают одинаковой Силой Инерции. Но Силой Инерции могут обладать лишь движущиеся фотоны. А это означает, что в каждый момент времени по поверхности любого химического элемента в составе освещаемого небесного тела движутся свободные частицы.

Они проходят транзитом – от периферии небесного тела к его центру. Т.е. состав поверхностных слоев любого химического элемента постоянно обновляется.

Сказанное совершенно справедливо для фотонов двух других комплексных цветов – фиолетового и оранжевого.

И это еще не все объяснение.

Любой химический элемент устроен точно по образу любого небесного тела.

В этом и заключается истинный смысл «планетарной модели атома», а вовсе не в том, что электроны летают по орбитам как планеты вокруг Солнца. Никакие электроны в элементах не летают! Любой химический элемент – это совокупность слоев элементарных частиц – простейших (неделимых) и комплексных.

Также как любое небесное тело – это последовательность слоев химических элементов. Т.е. комплексные (нестабильные) элементарные частицы в химических элементах выполняют ту же функцию, что и химические элементы в составе небесных тел. И точно также как в составе небесного тела более тяжелые элементы располагаются ближе к центру, а более легкие – ближе к периферии, Так же и в любом химическом элементе. Ближе к периферии располагаются более тяжелые элементарные частицы.

А ближе центру – более тяжелые. Это же правило распространяется на частицы, транзитно проходящие по поверхности элементов. Более тяжелые, чья Сила Инерции меньше, ныряют глубже к центру. А те, что легче и чья Сила Инерции больше, образуют более поверхностные текучие слои. Это означает, что если химический элемент красного цвета, то его верхний слой из фотонов видимого диапазона образован красными фотонами. А под этим слоем располагаются фотоны всех остальных пяти цветов – по нисходящей – оранжевый, желтый, зеленый, синий и фиолетовый.

Если же цвет химического элемента зеленый, то это означает, что верхний слой его видимых фотонов представлен фотонами, дающими зеленый цвет.

А вот слоев желтого, оранжевого и красного цветов у него нет или практически нет.

Повторим – более тяжелые химические элементы обладают способностью удерживать более легкие элементарные частицы – красного цвета, например.

Таким образом, не совсем корректно говорить, что для фотосинтеза одних водорослей нужна одна цветовая гамма, а для фотосинтеза других – другая. Точнее сказать, взаимосвязь между цветом пигментов и предельной глубиной обитания прослежена верно.

Однако объяснение верно не до конца. Энергия, требующаяся водорослям для фотосинтеза, состоит не только из видимых фотонов. Не следует забывать про ИК и радио фотоны, а также УФ. Все эти виды частиц (фотонов) требуются и используются растениями при фотосинтезе. А вовсе не так – хлорофиллу нужные преимущественно красные видимые фотоны, фукоксантину – желтые и образующие зеленый цвет, а фикоэритрину – синие и зеленые. Вовсе нет.

Ученые совершенно верно установили факт, что световые лучи синего и зеленого цветов способны достигать в большем количественном составе больших глубин, нежели желтые лучи, и тем более – красные.

Причина все та же – разная по величине Сила Инерции фотонов.

Среди частиц Физического Плана, как известно, в состоянии покоя только у красных есть Поле Отталкивания. У желтых и синих вне состояния движения – Поле Притяжения. Поэтому инерционное движение только у красных может длиться бесконечно. Желтые и синие с течением времени останавливаются.

И чем меньше Сила Инерции, тем быстрее произойдет остановка. Т. е. световой поток желтого цвета тормозится медленнее зеленого, а зеленый – не так быстро, как синего. Однако, как известно, в естественных условиях монохроматического света не бывает. В световом луче смешаны частицы разного качества – разных подуровней Физического Плана и различных цветов.

И в таком смешанном световом луче частицы Ян поддерживают инерционное движение частиц Инь. А частицы Инь, соответственно, тормозят Ян. Большой процент частиц какого-то одного качества несомненно сказывается на общей скорости светового потока и на средней величине Силы Инерции.

Фотоны проникают в толщу воды, двигаясь либо диффузно, либо прямолинейно.

Диффузное движение — это движение под действием Сил Притяжения химически элементов, в среде которых происходит движение. Т.е. фотоны передаются от элемента к элементу, но при этом общее направление их перемещения остается все тем же – в сторону центра небесного тела.

При этом сохраняется инерционный компонент их движения. Однако траектория их движения постоянно контролируется окружающими элементами. Вся совокупность движущихся фотонов (солнечных) образует своего рода газовые атмосферы химических элементов – как у небесных тел – планет. Для того чтобы понять, что представляют из себя химические элементы, вы должны чаще обращаться к книгам по астрономии.

Поскольку аналогия между небесными телами и элементами полнейшая. Фотоны скользят в этих «газовых оболочках», постоянно сталкиваясь друг с другом, притягиваясь и отталкиваясь – т.е. ведут себя в точности как газы атмосферы Земли.

Таким образом, фотоны движутся вследствие действия в них двух Сил – Инерции и Притяжения (к центру небесного тела и к элементам, в среде которых они движутся).

В каждый момент времени движения любого фотона, чтобы узнать направление и величину суммарной силы, следует пользоваться Правилом Параллелограмма.

Фотоны красного цвета слабо поглощаются средой, в которой движутся.

Красные водоросли

Красные водоросли, или багрянки ( Rhodophyta) — отдел подцарства Biliphyta. Их название произошло от греческого слова rhodon, что означает «розовый». Они составляют большую группу (около 400 родов и 3900 видов) главным образом морских обитателей. Лишь 5% багрянок встречаются в чистых водах рек, озёр и на поверхности влажной почвы.

Красные морские водоросли можно обнаружить во всех прибрежных районах мира — от тропиков до полюсов, но их разнообразие в полярных регионах невелико. В основном они ведут прикрепленный образ жизни, закрепляются при помощи ризоидов на камнях, раковинах или морских травах. Базальные клетки этих видов проникают в организм хозяина, образуя вторичные ямочные связи с их клетками. Многочисленные красные водоросли (более 40 родов) паразитируют, как правило, на других красных водорослях.

Отличительные особенности красных водорослей

Красные водоросли более мягкие и менее сложно устроенные, чем бурые. От других водорослей и эмбриофитов они отличаются структурными, биохимическими и репродуктивными особенностями. Одно из наиболее важных биохимических различий заключается в том, что подобно цианобактериям они содержат вспомогательные пигменты фикобилины (фикоэритрин, фикоцианин), которые агрегируются в фикобилисомах, расположенных на мембранах телакоидов пластид. Красный цвет багрянок обусловлен присутствием фикоэритрина, однако они часто бывают фиолетовыми, коричневыми или черными из-за дополнительного наличия фикоцианина, так же как и у цианобактерий. Также у них есть вспомогательные каратиноидные пигменты и основной пигмент — хлорофилл a и d, фактическое количество которого зависит от глубины обитания водорослей. В группе есть и водоросли, окрашенные в зелёный цвет.

Водоросли, залегающие в поверхностных водах, имеют множество пигментов, пригодных для работы в условиях относительно интенсивного освещения. На большей глубине (багрянки живут до глубины в 100 м) они имеют другой комплекс пигментов, с преимуществом фикобилинов, лучше приспособленных к фотосинтезу в условиях тусклого света при изменённом спектре, присутствующем в результате дифференциального поглощения цвета воды.

Избыток продуктов фотосинтеза в почти исключительно одноядерных клетках красных водорослей накапливается в виде гранул багрянкового крахмала — разветвлённого полимера глюкозы, похожего на гликоген. Эти гранулы находятся только в цитоплазме, а не в пластидах. Багрянковый крахмал окрашен в бурый цвет из-за содержания йода. У красных водорослей встречаются и другие запасные вещества, содержащие необычные сахара, такие как флоридозид и изофлоридозид, указывающие на то, что углеводный обмен красных водорослей сильно отличется от такового у настоящих растений.

Пластиды багрянок имеют различную форму: дисковидную, лопастную, овальную, звездчатую, но не бывают чашевидными. Они окружены двумембранной оболочкой и содержат одиночные тилакоиды.

Источник изображения: https://present5.com/tema-14-nizshie-rasteniya-ili-vodorosli-vodorosli/

У ряда красных водорослей клеточная стенка инкрустируется карбонатами кальция, магния или стронция. Иногда поверх клеточной стенки расположена белковая кутикула. В семействе коралловых красных водорослей (Corallinaceae) карбонат кальция в стенках клетки накапливается так, что они становятся похожими на камни. Стенки всех красных водорослей не содержат плазмодесм, характерных для настоящих растений, вместо этого они соединяются при помощи ямчатых связей с отверстием в центре. Это отверстие закрывается «поровыми пробками», построенными из полисахаридов и белков.

Большая часть водорослей многоклеточны — нитчатые и псевдопаренхимные (ложнотканевые). Они внешне имеют нитевидные, листовидные и перепончатые структуры. Одноклеточны только немногие роды, такие как Порфириум (Porphyridium) и Rhodospora.

Несмотря на довольно большие размеры, которых могут достигать тела красных водорослей, их клетки различаются незначительно, главным образом только набором пигментов и размером.

Жизненный цикл красных водорослей

Жизненные циклы большинства красных водорослей малоизвестны, но те немногие, которые были хорошо изучены, все чрезвычайно сложны и сильно отличаются от других групп водорослей. Они включают по крайней мере одну многоклеточную стадию, но ни одна из них не имеет стадии подвижных жгутиковых клеток. Жизненные циклы их очень разные и их нельзя представить одинаковой схемой. Основная масса красных водорослей характеризуется сменой трёх поколений, за гаплоидным гаметофитом следуют диплоидный карпоспорофит и еще одно диплоидное спорофитное поколение (преимущественно тетраспорофит).

Гаметофиты (самостоятельные гаплоидные растения) несут гаметангии (карпогоны и сперматангии), которые производят спермации, и яйцеобразные клетки, называемые карпогониями. Карпогонии — это крупные клетки с длинным трубчатым расширением, которое в основном действует как рецептор для дрейфующих при помощи воды спермациев. Половой процесс богрянок исключительно оогамный (гамето-гаметангиогамия, или нети­пичная оогамия). Когда спермации контактирует с расширением карпогония, происходит плазмогамия и ядро мигрирует к основанию яйца, где происходит кариогамия.

В любой другой группе эта клетка была бы зиготой и либо росла, либо производила споры, но у многих красных водорослей оплодотворенный карпогоний выпускает длинную нить, которая выносит диплоидное ядро из карпогония и откладывает его в совершенно другую вспомогательную клетку — карпосопорофит, в котором происходит митоз с образованием диплоидных карпоспор.

Карпоспоры представляют собой новое поколение, которое не имеет аналогов в других группах водорослей или растений. Карпоспоры пассивно плавают, потом оседают и вырастают в тетраспорофиты, аналогичные обычному спорофиту. У них имеются спорангии, в которых клетки делятся мейотически и продуцируют гаплоидные тетраспоры (реже моноспоры), вырастающие в гаметофиты.

Гаметофит и тетраспорофит чаще всего имеют одинаковый внешний вид, но могут быть и непохожими, отчего раньше их относили не только к разным родам, но и даже к далеко отстоящим друг от друга по­рядкам. Также и паразитирующий на гаметофите карпоспорофит в отдельных случаях вы­глядит как нечто постороннее до такой степе­ни, что его считали действительно инородным паразитом и давали ему особое название.

Последовательность разных поколений на одном организме (гаплобионтный тип развития) можно проследить на встреча­ющихся в пресной воде видах рода Batrachospermum.

Жизненный цикл Батрахоспермума

Как люди используют красные водоросли?

В дополнении к тонкому слою целлюлозы или ксилана клетки красных водорослей содержат толстый слой слизей, называемых сульфатированными галактанами. Их используют в качестве загустителей в кондитерской и пищевой промышленности (сыры, салаты, пудинги, мороженое). Из них же извлекают питательную среду агар.

Большинство красных водорослей являются фотосинтезирующими растениями, выступая первичными продуцентами морских экосистем, и служат кормовой базой для различных беспозвоночных и позвоночных животных. Группа известковых (кораллиновых) водорослей совместно с кораллами формирует коралловые рифы. Способность этих водорослей накапливать растворенные в воде вещества, в том числе и радиоактивные, используют в биоиндикации качества морской воды.

Благодаря высокому содержанию витаминов и белков и высокой скорости роста некоторые представители багрянок являются объектом промысла и культивирования как пищевые растения, к примеру, порфира (Porphyra), известная под названием «нори», грацилярия (Gracilaria) и пальмария (Palmaria palmata).

Классификация красных водорослей

Единственный класс крас­ных водорослей — Rhodophyceae, подразделяется на подклассы Bangiophycidae и Florideophycidae.

Порядок Порфиридиевые (Porphyridiales)

Объединяет одно­клеточные, отчасти колониальные формы, по­ловое размножение которых неизвестно. У часто встречающейся наземной водоросли Porphyridium
purpureum многочисленные отдельные клетки объединены в слизи.

Одноклеточная красная микроводоросль Порфириум пурпурный (Porphyridium purpureum) представляет значительный интерес благодаря уникальному составу пигментов. В составе P. purpureum выявлены В-фикоэритрин, b-фикоэритрин, R-фикоцианин, аллофикоцианин, аллофикоцианин В, относящиеся к группе фикобилипротеинов, а также хлорофилл а и каротиноиды (β-каротин, зеаксантин и β-криптоксантин). По этой причине водоросль активно культивируют для получения веществ, применяемых в косметике и других отраслях промышленности.

Порфириум пурпурный (Porphyridiophyceae, Rhodophyta).
Автор: Неободо, CC BY-SA 4.0

Округлые клетки этой водоросли обычно собраны в слизистые колонии. Они покрывают стены и почву в виде кроваво-красных плёнок. Размножаются они чаще вегетативно — делением клетки надвое. Иногда у них образуются моноспоры, при этом протопласт их округляется и покидает материнскую клетку.

Порядок Бангиевые (Bangiales)

К этому порядку относятся нитчатые (Бангия) и листовидые (Порфира) красные водоросли.

Эритротрихия (Erythrotrichia) состоит из неразветвлённых нитей, на которых возникают моноспороциты, а в них образуется по одной моноспоре. Вначале они голые, передвигаются по амёбоидному типу. Затем прорастают в новую эритротрихию.

Erythrotrichia tetraseriata.
Автор: Аллан Хэнкок Фонда

Бангия (Bangia) — пресноводная и морская нитчатая красная водоросль. Неразветвлённые нити вначале однослойны, позже многослойны, прикрепляются к субстрату при помощи подошвы, позже ризоидов. Клетки бангии со звездчатым хроматофором и одним пиреноидом. Характеризуются наличием 2n стадии (карпоспора) и 4n стадии(цистокарпа).

Порфира (Porphyra) имеет тело в виде двуслойной пластинки, сужающейся книзу в виде тонкого стебелька, переходящего в подошву с ризоидами. Карпогоны порфиры  чаще бывают неотличимыми от вегетативных клеток. Зигота делится митозом на несколько диплоидных карпоспор. Карпоспорофитное поколение либо сильно редуцировано, либо отсутствует.

Карпоспоры прорастают в диплоидную нить, внедряющуюся в известковую раковину двустворчатых моллюсков (устриц, мидий, морских гребешков) или морских желудей. Там начинается развитие спорофитной фазы жизненного цикла порфиры. У порфиры она носит название Conchocelis-фазы.

Фаза заканчивается образованием конхоспор, гомологичных тетраспорам, которые претерпевают мейотическое деление. Некоторые виды порфиры съедобны, их активно разводят и используют в странах Азии, в Великобритании. Может быть не только розовой, красной, но и зеленоватой. Зелёный и почти чёрный цвет порфиры нам знаком по «нори», используемом при изготовлении суши.

Жизненный цикл порфиры

Подкласс флоридеи ( Florideophyceae)

Представители этого подкласса имеют бо­лее сложное строение таллома, основу которою составляют разветвленные нити с верхушечным ростом. Одноклеточные формы среди них не встре­чаются. Уже простейшие флоридеевые
имеют гетеротрихальное строение (т.е. диффе­ренцированы на подошву и вертикальные нити), однако даже наиболее высокоразвитые предста­вители в противоположность бурым водорослям никогда не бывают  настоящими тканевыми (паренхимотозными). Клетки их соединены порами.

Род Батрахоспермум, или лягушечник (Batrachospermum) — распространённая в Европе пресноводная водоросль. Растёт главным образом в быстротекущих реках и ручьях с чистой водой. Её жизненный цикл мы рассматривали выше. Нитчатый гаметофит батрахоспермума достигает 40 см в длину.

Батрахоспермум

Родохортон инвестиенс (Rhodochorton investiens) — живёт как эпифит на видах Батрахоспермума. Имеет нормальный диплобионтный цикл раз­вития, а его гаметофит и тетраспорофит в значительной мере сходны между собой.

Представители рода Леманея (Lemanea) тоже пресноводны. Они имеют зелёную окраску. Это трубчатая или разветвлённая нитчатая водоросль.

Леманея. Адрес изображения: https://slovar.wikireading.ru/imgslovar/16452_0.jpg

У представителей этого рода известно только половое размножение. Ни моноспор, ни тетраспор на них не образуется. Леманеи обладают высокой способностью к вегетативному размножению и регенерации таллома.

Порядок криптонемиевые (Cryptonemiales)

Вспомогательные для женских половых органов клетки (ауксиллярные) закладываются на специализированных пучках «ветвей». К этому порядку относятся водоросли родов Corallina, Lithothamnion, Lithophyllum, клеточные стенки которых инкрустируются кристаллами кальция. От этого водоросли становятся твёрдыми и ломкими. При жизни они имеют красные оттенки окраски, после гибели быстро высыхают и выцветают. Они обитают в коралловых рифах.

Порядок гигартиновые (Gigartinales)

Причиной выделения водорослей в этот порядок стало то, что их ауксиальная клетка образуется из нормальной интеркалярной (активно растущей) клетки таллома. Внешне они очень разные и отличить их может только специалист.

К этому порядку относятся космополитные для умеренных широт водоросли с перистыми уплощёнными талломами Plocamium.

Plocamium sp. Автор: Дерек Китс CC BY-SA 2.0

Плоско-вильчатая Chondrus.

Chondrus elatus.
Автор: Daderot, CC0

И имеющая форму фонтана Furcellaria lumbricalis. Из неё добывают каррагинан, используемый в пищевой, косметической и фармацевтической промышленностях.

Furcellaria lumbricalis

Порядок Rhodymcniales

Несущая клетка карпогона перед оплодотворением отшнуровывает дочернюю клетку, а та, в свою очередь, —
ауксилярную клетку. Карпогон возникает от прокарпия (состоящего из несущей клетки, дочер­ней клетки, ауксилярной клетки и карпогонной ветви), который после оплодотворения становит­ся пистокарпием. Сюда относится часто встречающаяся в Атлантике Родимения (Rhodymenia) с листовид­ным талломом.

Rhodymenia pseudopalmata. Автор: Luis Fernández García, C.С. 4.0

Порядок церамиевые (Ceramiales)

Ауксилярная клетка обособляется после оплодотворения карпого­на от несущей клетки карпогонной оси. Име­ются прокарпий (здесь состоящий из несущей клетки, ауксилярной клетки и карпогонной вет­ви) и цистокарпий, как и у предыдущего поряд­ка. Жизненный цикл соответствует представлен­ной вначале основной схеме.
Таллом построен по одноосевому типу и со­стоит из обильно разветвленных нитей, часто образующих кору.

Особенно сложно расчленен таллом водо­росли Делессерии кроваво-красной (Delesseria sanguined), обитающей в Атлантическом океане. Листовидные лопасти ее тал­лома, отходящие от базального диска, имеют цен­тральную и боковые жилки. Осенью пластины отмирают, но основные оси остаются и следующей весной развива­ют новые пластины.

Красные водоросли: Делессерия кроваво-красная (Delesseria sanguined). Автор: Gabriele Kothe-Heinrich, CC BY-SA 3.0

 

 

Вам будет интересно

  • Ботаника как наука

    Ботаника — это комплексный раздел биологии, изучающий растения. Как наука она появилась на базе практических…

  • Строение листьев

    В ботанике листья – это вегетативные органы, части побега сосудистых растений. В норме они развиваются…

  • Ткани растений

    Хлопковые, льняные, синтетические — это ткани, из которых люди шьют себе одежду. Она нужна им…

«Многообразие водорослей и их значение».

Конспект урока: «Многообразие водорослей и их значение».

Цель урока: познакомить учащихся с характерными признаками строения и жизнедеятельности водорослей как представителей низших растений, показать особенности среды обитания, многообразие водорослей и значение в природе.

Задачи:

Познавательные: научить отличать водоросли от других изученных растений; уметь объяснять особенности строения и жизнедеятельность водорослей; понимать смысл биологических терминов: слоевище, водоросли.

Развивающие: развить умение самостоятельно организовывать учебное взаимодействие при работе в группе (паре)

Воспитательные: сформировать бережное отношение к природе.

Тип урока: комбинированный.

Ход работы:

1. Готовность класса к уроку: проверить наличие необходимых принадлежностей к уроку.

2. Опрос по предыдущей теме урока: фронтальный опрос.

3. Подготовка к восприятию нового материала: сообщение темы урока.

4. Объяснение нового материала.

Водоросли в основном живут в пресных и морских водоёмах, но встречаются виды, обитающие на сырых участках почвы, коре деревьев, крышах домов, высоко в горах, в ледниках и других местах с повышенной влажностью.

Водоросли относятся к низшим растениям, они не имеют ни корней, ни стеблей, ни листьев. Среди водорослей есть одноклеточные и многоклеточные растения. Клетка водорослей имеет типичное строение растительной клетки. Она имеет клеточную стенку, цитоплазматическую мембрану, цитоплазму, ядро, вакуоль с клеточным соком, хлоропласты и другие органоиды. Пластиды зелёных водорослей называются хроматофорами. Хлорофилл, содержащийся в хроматофоре, придает зелёную окраску всей клетке. Все водоросли автотрофы.

К водорослям относятся как микроскопические, так и довольно крупные организмы. Они могут прикрепляться к субстрату своей нижней частью, особыми дисками либо оставаться неприкрепленными.

 Талломы водорослей бывают различного цвета. Это связано с сочетанием в них пигментов: зелёных, оранжевых, жёлтых, красных, синих.

Выделяют следующие отделы водорослей: Зелёные, Красные и Бурые водоросли.

Одноклеточные зелёные водоросли обитают в солёной и пресной воде, на суше, на поверхности деревьев, камней или зданий, в сырых, затенённых     местах. Виды, живущие вне воды, в период засухи находятся в состоянии покоя.

Вы, очевидно, наблюдали летом «цветение» воды в лужах и прудах. «Цветущая» вода имеет изумрудный оттенок. Если зачерпнуть немного этой воды, то она окажется прозрачной. В капле такой воды под микроскопом хорошо видно множество различных одноклеточных зелёных водорослей, которые и придают ей изумрудный оттенок.

Во время «цветения» водоёмов в воде чаще всего встречается одноклеточная водоросль хламидомонада (в переводе с греческого — «простейший организм, покрытый одеждой»). Хламидомонада — одноклеточная зелёная водоросль грушевидной формы. Она движется в воде при помощи двух жгутиков, находящихся на переднем, более узком конце клетки. Снаружи хламидомонада покрыта прозрачной оболочкой, под которой расположены цитоплазма с ядром, красный «глазок»(светочувствительное тельце красного цвета), крупная вакуоль, заполненная клеточным соком, и две маленькие пульсирующие вакуоли. Хлорофилл и другие пигменты у хламидомонады находятся в крупном чашеобразном хроматофоре.

Еще одна одноклеточная зелёная водоросль — хлорелла широко распространена в пресных водоёмах и на влажных почвах. Слоевище хлореллы — микроскопическая неподвижная клетка с плотной целлюлозной оболочкой. Форма клетки чаще шаровидная. В цитоплазме находятся ядро, различные органоиды и крупный подковообразный хлоропласт.

У многоклеточных зелёных водорослей слоевище имеет форму нитей или плоских листовидных образований. В проточных водоёмах часто можно заметить ярко-зелёные скопления шелковистых нитей, прикреплённых к подводным камням и корягам. Это многоклеточная нитчатая зелёная водоросль улотриксЕго нити состоят из ряда коротких клеток. В цитоплазме каждой из них расположены ядро и хроматофор в виде незамкнутого кольца. Клетки делятся, и нить растёт.

Спирогира — зелёная многоклеточная водоросль, живущая в пресных водоемах. Талломы её — неветвящиеся нити до 10 см длиной. Они чаще всего в виде нежной светло-зелёной слизистой тины плавают у поверхности воды в прудах, озёрах, реках. Клетки таллома спирогиры вытянуты в длину, имеют клеточную стенку из целлюлозы и сильно ослизнены. В цитоплазме расположен один или несколько хроматофоров виде спирально закрученных лент.

Многоклеточные зелёные водоросли живут также в водах морей и океанов. Примером таких водорослей может служить ульва, или морской салат, длиной около 30 см.

Наиболее сложное строение среди Зелёных водорослей имеют харовые водоросли, обитающие в пресноводных водоёмах. Они по внешнему виду напоминают хвощи. У харовых имеются образования, которые по форме и по выполняемым функциям напоминают корни, стебли, листья, но по строению они не имеют ничего общего с этими органами высших растений. Например, к грунту они прикрепляются с помощью бесцветных ветвистых нитевидных выростов, которые называют ризоидами. Харовую водоросль нителлу часто выращивают в аквариумах.

Бурые водоросли в основном морские растения, имеющие желтовато-бурую окраску слоевищ. Их длина колеблется от микроскопической до гигантской (несколько десятков метров). Слоевища этих водорослей могут быть нитевидными, шаровидными, пластинчатыми, кустообразными.

В  дальневосточных морях и морях Северного Ледовитого океана растёт крупная бурая водоросль ламинария, или морская капуста. Её заросли обычны на глубинах 4-10 м (иногда 100 м). Таллом ламинарии имеет коричневую окраску, так как в нём содержится много жёлтых пигментов, маскирующих хлорофилл. Таллом ламинарии покрыт слизью и может достигать длины 20 м. Из ламинарии готовят салаты, консервы и даже кондитерские изделия, а также лекарства.

Красные водоросли, или багрянки, — в основном многоклеточные морские растения. В клетках красных водорослей, кроме хлорофилла, содержатся красные и синие пигменты. В зависимости от их сочетания окраска багрянок меняется от ярко-красной до голубовато-зелёной и жёлтой.

 Внешне красные водоросли весьма разнообразны и очень красивы. Они имеют разнообразную форму: нитевидную, цилиндрическую и  пластинчатую. В морях багрянки встречаются повсеместно. Благодаря тому, что красные пигменты способны улавливать даже очень небольшое количество света, багрянки могут расти на значительных глубинах. Их можно встретить даже на глубине 100—200 м.

Водоросли имеют огромное значение в природе и жизни человека.

Водорослями питаются рыбы и другие водные животные. Водоросли поглощают из воды углекислый газ и, как все зелёные растения, выделяют кислород, которым дышат живые организмы, обитающие в воде.

Человек использует морские водоросли в химической промышленности. Из них получают йод, калийные соли, целлюлозу, спирт, уксусную кислоту и другие продукты. Водоросли используют как удобрения и употребляют на корм скоту. Из некоторых видов красных водорослей добывают студенистое вещество агар-агар, необходимое в кондитерской, хлебопекарной, бумажной и текстильной промышленности.

Во многих странах водоросли используют для приготовления разнообразных блюд. Они очень полезны, так как содержат много углеводов, витаминов, богаты йодом. Особенно часто употребляют в пищу ламинарию (морскую капусту) и ульву (морской салат).

Хламидомонаду, хлореллу и другие одноклеточные зелёные водоросли применяют при биологической очистке сточных вод.

5. Закрепление новой темы: выполнение заданий в рабочей тетради.

6. Итог урока: дать оценку ученикам, работавшим на уроке.

7. Домашнее задание.

Строение водорослей, подготовка к ЕГЭ по биологии

Водоросли относятся к низшим растениям, наиболее примитивным: у них отсутствует разделение организма на стебель, корень и листья. Спешу заметить, что термин "низшие растения" - отжившее понятие, использовавшееся в ботанике до второй половины XX века.

Современная биология не считает дифференциацию тканей определяющим различием, сейчас существенным считают фундаментальные различия в строение клеток, обмене веществ. Тем не менее, во многих устаревших пособиях этот термин используется, и я обязан предупредить вас о нем.

Наука о водорослях называется альгология (от лат. alga — морская трава, водоросль и греч. λόγος — учение).

Среди водорослей есть одноклеточные и многоклеточные, некоторые водоросли достигают в длину 100-200 метров. Способ питания водорослей автотрофный: они синтезируют органические вещества в процессе фотосинтеза. Солнечный свет, проходя через толщу воды, рассеивается, что делает фотосинтез с увеличением глубины все труднее и труднее. Поэтому кроме хлорофилла они часто имеют и другие пигменты.

Клетки водорослей характеризуются наличием клеточной стенки (из целлюлозы и гликопротеинов - от греч. glykys сладкий (углеводы) + греч. prōtos — первый, важнейший (белок)) Органоиды располагаются в цитоплазме (син. - внеядерной протоплазме), где также располагается(-ются) один или несколько хроматофоров. Размножение происходит бесполым, вегетативным или половым путем.

Тело водорослей представлено слоевищем (син. - талломом) - недифференцированным скоплением клеток. С помощью ризоидов (от др.-греч. ῥίζα — корень и εἶδος — вид) водоросли прикрепляются к субстрату (камням, коралловым полипам), функцию всасывания ризоиды не выполняют. У водорослей отсутствуют настоящие ткани, механических тканей нет, так как таллом водоросли поддерживается (парит) в толще воды. Нет проводящих тканей: каждая клетка имеет доступ к воде напрямую, так что в клетку из окружающей воды поступает кислород, а в воду удаляется углекислый газ.

Хроматофор (от греч. chroma - цвет и phoros - несущий) - органелла в клетке водоросли, аналогичная хлоропласту и осуществляющая фотосинтез. Отличается от хлоропласта упрощенным строением, меньшим размером и иным составом хлорофилла. Внешне отличаются между собой по форме, хроматофор может быть: чашевидный, спиралевидный, в виде незамкнутых колец, цилиндрические, лентовидные, дисковидные. В хроматофорах находятся пигменты, которые придают окраску растению.

Система вакуолей в клетках водорослей развита отлично, в подвижных клетках водорослей можно обнаружить пульсирующие (сократительные) вакуоли. Их основная функция - поддержание постоянного осмотического давления внутри клетки. Вообразите: в глубине океана находится клетка водоросли, в которую постоянно поступает много воды. Если бы не было таких сократительных вакуолей, то клетка просто лопнула бы, но их работа обеспечивает удаление избытка воды.

Также у многих подвижных водорослей в клетках присутствует светочувствительный глазок (стигма), что обуславливает их чувствительность к свету - фототаксис. Подвижные водоросли стремятся занять как можно более освещенное место, чтобы активно шел процесс фотосинтеза.

Жизненный цикл водорослей

Жизненные циклы водорослей разнообразны, обусловлены рядом экологических факторов. Мы разберем жизненный цикл на примере зеленой водоросли ульвы (морского салата).

Для начала отметим, что в целом жизненный цикл водорослей представляет собой чередование двух фаз: гаплоидной (гаметофита) и диплоидной (спорофита). Гаплоидной фазой называется фаза, при которой клеточные ядра содержат непарный (половинный) набор хромосом. К гаплоидной фазе всегда принадлежат гаметы: сперматозоиды, спермии (отличающиеся от сперматозоидов отсутствием жгутика), яйцеклетки.

При слиянии двух гамет: яйцеклетки (n) и спермия (n) образуется зигота (2n) из которой развивается спорофит (2n), таким образом, в спорофите восстанавливается диплоидный набор хромосом. В зооспорангии на спорофите в результате мейоза образуются зооспоры (n), которые делятся митозом, порастают и образуют мужские и женские гаметофиты (n). Клетки гаметофитов делятся митозом, образуются гаметы (n), которые сливаются в зиготу (2n), цикл замыкается.

Типы половых процессов

У водорослей выделяют несколько типов полового процесса:

  • Изогамия - копулирующие элементы (гаметы) не отличаются друг от друга, подвижны
  • Анизогамия - от греч. anisos неравный и gamos брак (гетерогамия) - при таком типе копулирующие элементы различаются по размерам, форме, величине, поведению
  • Оогамия - от др. греч. ᾠόν яйцо и γάμος брак - копулирующие элементы резко отличаются друг от друга: крупная женская гамета без жгутиков обычно с мужской мелкой подвижной гаметой. Допустимо считать оогамию в некотором смысле подтипом анизогамии.

Особо стоит выделить тип полового процесса - конъюгацию. Конъюгация отличается тем, что сливаются не гаметы, а обычные вегетативные клетки, лишенные жгутиков. Клетки соединяются друг с другом с помощью боковых выростов, формируется копуляционный (конъюгационный) канал, по которому содержимое из одной клетки перетекает в другую - образуется зигоспора. В дальнейшем из зигоспоры развивается новая водоросль.

Отметим, что зооспора представляет собой подвижную клетку, которая способна двигаться в воде с помощью жгутиков. Образуется она в зооспорангии. Зооспора участвует в бесполом размножении у многих водорослей и простейших грибов. У некоторых водорослей имеются апланоспоры (гр. aplanes неподвижный + spora семя) - неподвижные безжгутиковые споры. Зооспоры и апланоспоры выходят в окружающую среду, разрывая стенки спорангия, в котором они находятся.

Значение водорослей

В Мировом океане водоросли составляют основную часть биомассы. Именно они являются главными продуцентами (производителями) органического вещества, преобразуя в ходе фотосинтеза энергию солнечного света в энергию химических связей. Значение водорослей для человека трудно переоценить: содержащиеся в них вещества необходимы для нормального роста и развития животных и человека (к примеру, морская капуста (ламинария) отличается большим содержанием йода.)

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Разнообразие окраски водорослей вызвано — КиберПедия

а. маскировкой б. особенностями размножения

в. приспособленностью к фотосинтезу г. мимикрией

Главное отличие одноклеточных животных от одноклеточных

Растений

а. более мелкие размеры б. активная подвижность

в. питание готовыми органическими веществами г. половое размножение

Газообмен у эмбриона амниот осуществляется через

а. алантоис б. амнион в. серозу г. все названные оболочки

Из перечисленных ракообразных простые глаза имеют

а. речные раки б. креветки в. мокрицы г. никакие

Восстановление диплоидного набора хромосом в зиготе происходит в

результате а. мейоза б. митозав. конъюгации г. оплодотворения

Нуклеотид – это

а. центральная часть ядра б. мономер белка

в. мономер ДНК г. участок гистонов

7. Устойчивость насекомых к пестицидам - это пример изменчивости

а. модификационной б. фенотипической

в. мутационной г. комбинативной

Процесс переписывания информации с ДНК на иРНК называется

а. биосинтезом б. редупликацией

в. транскрипцией г. трансляцией

К внутривидовым дифференцировкам и полиморфизму ведёт отбор

а. движущий б. стабилизирующий

в. дизруптивный г. ни один из приведённых

У человека с грудиной хрящом сочленяются

а. 12 пар рёбер б. 10 пар рёбер в. 7 пар рёбер г. 5 пар рёбер

Обязательной частью любой клетки является

а. ядро б. лизосомы в. цитоплазма г. пластиды

Конъюгация гомологичных хромосом и кроссинговер происходят в

мейозе I, на стадии а. профазы б. метафазыв. анафазы г. телофазы

Непроницаемость мембран для гидрофильных соединений связана с

наличием а. периферических белков б. липидной фазы

в. гликопротеидов г. целлюлозы

Из класса двудольных наиболее прогрессивным является семейство

а. лилейные б. паслёновые в. сложноцветные г. крестоцветные

Окончательным хозяином в цикле развития плоских червей

Считается организм, где

а. проходит большая часть жизни б. происходит половой процесс

в. созревают яйца г. образуется личинка

ЗАДАНИЕ 2 Оцените суждения(поставьте рядом с номером знак «+»,

если правильные или знак «–», если неправильные суждения). Каждый

верный выбор оценивается в 2 балла. Задание оценивается в 22 балла.

1. Гидрофобные хвосты молекул липидов всегда состоят из насыщенных

жирных кислот

2. У ленточных червей пищеварительная система отсутствует

3. Просо относится к однодольным растениям

4. Анальное отверстие у хордовых формируется на месте первичного рта



5. Развитие эмбриона у позвоночных всегда происходит в жидкой среде.

6. У всех высших растений половой процесс оогамный

7. Синапсы образуются в месте контакта любых типов клеток

8. Вода поступает в клетку через мембрану в основном за счёт осмоса

9. Вирусы могут размножаться только в живых клетках

10. Каждой аминокислоте соответствует своя т-РНК

11. В хлоропластах темновые реакции фотосинтеза происходят в строме

ЗАДАНИЕ 3.Распределите рыб по отрядам, поставив соответствующие

буквы. Задание оценивается в 18 баллов.

Лососёвые ______________________________________,

Карпообразные __________________________________,

Тресковые ______________________________________.

а. горбуша, б. сазан, в. навага, г. сёмга, д. карп, е. налим ж. лещ, з. кета,

и. плотва

ЗАДАНИЕ 4.Напишите соответствующий хромосомный набор в ядрах

клеток. Задание оценивается в 10 баллов.

1.Таллома многоклеточной зелёной водоросли _____________,

2. Заростка папоротника _________,

3. Плодового тела шляпочного гриба ___________,

4. Спороносного побега хвоща ______,

5. Эндосперма семян цветковых растений___________________

ЗАДАНИЕ 5.Впишите термины, исходя из определений

соответствующих понятий. Задание оценивается в 10 баллов.

1. Возможный размах фенотипических изменений при данном генотипе -

_______________________________________

2. Согласно правилу _______________________________ выступающие

части тела теплокровных животных в холодном климате короче, чем в

тёплом (чтобы уменьшить теплоотдачу).

3. Химические элементы, постоянно входящие в состав живых организмов

и необходимые им для жизнедеятельности, называются__________________.

4. Происхождение какой-либо систематической группы организмов от

единого общего предка- ________________________________________

5. Соединение, возникающее при конденсации двух аминокислот, -______________

Задание 6.Дополните фразы, вписав нужные термины. Правильно

вписанный термин оценивается в 1 балла. Задание оценивается в 10



Баллов.

1. Рибоза, дезоксирибоза, фруктоза – углеводы группы___________________.

2. Основные жизненные формы растений _________________,

__________________, ______________________.

3. Фотосинтетические пигменты высших растений- ___________ и_____________.

4. Кроты, землеройки, ежи – представители отряда____________________.

5. Царства эукариотов - __________________, __________________,_______________.

Красные приливы и цветение водорослей, факты и информация

Эти ядовитые водоросли, некоторые из которых имеют темно-красный цвет, вызывают волну последствий для животных и людей.

Часто темно-красного или коричневого цвета, типичный красный прилив можно наблюдать вдоль морского побережья.Красные приливы относятся к токсичным цветениям микроскопических водорослей, которые происходят во всем мире. В Соединенных Штатах эти цветы появляются в трех основных прибрежных районах. Они вызываются несколькими различными микроорганизмами, все из которых фитопланктон, которые используют световую энергию для своего роста. Но они не всегда красные.

Что такое красные приливы?

По крайней мере три вида динофлагеллят и один вид диатомовых несут ответственность за токсичный беспорядок красных приливов в Соединенных Штатах.Эти микроскопические формы водорослей производят токсины, которые могут вызвать заболевание людей и быть смертельными для морских животных.

В Соединенных Штатах красные приливы чаще всего происходят в Мексиканском заливе, у побережья Калифорнии и в заливе Мэн. В каждом из этих мест разные микроорганизмы - обычно присутствующие на низких уровнях - вызывают цветение водорослей, когда условия совпадают. (Узнайте больше о красных приливах в Австралии.)

Тип токсичных водорослей, Karenia brevis , обитает в Мексиканском заливе круглый год при низких концентрациях.Когда условия окружающей среды, такие как температура, уровень питательных веществ и ветер, подходящие, популяция водорослей взрывается и образуются огромные цветы. Эти цветы выделяют в океан огромное количество бревотоксина. Эти красные приливы, имеющие характерный красный цвет, затрагивают Флориду, Луизиану, Алабаму и Техас.

.

Что такое водоросли? | Живая наука

Водоросли - это разнообразная группа водных организмов, способных проводить фотосинтез. Некоторые водоросли знакомы большинству людей; например, водоросли (такие как ламинария или фитопланктон), прудовая пена или цветение водорослей в озерах. Однако существует огромный и разнообразный мир водорослей, которые не только полезны для нас, но и имеют решающее значение для нашего существования.

Определение

Термин «водоросли» охватывает множество различных организмов, способных производить кислород посредством фотосинтеза (процесс сбора солнечной энергии для производства углеводов).Эти организмы не обязательно тесно связаны. Тем не менее, некоторые черты объединяют их, в то же время отличающие их от другой основной группы фотосинтезирующих организмов: наземных растений.

По мнению авторов «Водоросли: анатомия, биохимия и биотехнология, 2-е изд.», В первую очередь, водоросли не так сильно дифференцированы, как растения. (CRC Press, 2014). Другими словами, им не хватает настоящих корней, стеблей и листьев, а также сосудистой системы для циркуляции воды и питательных веществ по всему телу.Во-вторых, согласно статье 2014 года, опубликованной в журнале Current Biology, многие водоросли одноклеточные. Они также бывают самых разных форм и размеров. Они могут существовать в виде отдельных микроскопических клеток; они могут быть макроскопическими и многоклеточными; живут колониями; или приобретут лиственный вид, как в случае с водорослями, такими как гигантские водоросли. Пикопланктон имеет диаметр от 0,2 до 2 микрометров, в то время как листья гигантских водорослей достигают 60 метров в длину. Наконец, водоросли встречаются в различных водных средах обитания, как пресноводных, так и соленых.

В силу этих характеристик общий термин «водоросли» включает прокариотические организмы - цианобактерии, также известные как сине-зеленые водоросли, а также эукариотические организмы (все другие виды водорослей). «Поскольку« водоросли »не образуют естественную группу, которая произошла от общего предка, включение цианобактерий в неформальную группу является обычным явлением,« водоросли »являются обычным явлением», - сказала Линда Грэм, профессор ботаники в Университете Висконсин-Мэдисон. «Термин« эукариотические водоросли »исключает цианобактерии.«Также интересно отметить, что хлоропласты, которые являются местом фотосинтеза у наземных растений, являются адаптированными формами цианобактерий. Эти ранние цианобактерии были поглощены клетками примитивных растений где-то в конце протерозоя или в начале кембрия, согласно Музей палеонтологии Калифорнийского университета.

(Прокариоты включают бактерии и археи. Это более простые организмы без организованной клеточной структуры, и их ДНК свободно плавает в виде запутанной массы внутри цитоплазмы.С другой стороны, эукариоты - это все другие живые организмы: простейшие, растения, грибы. Что такое протисты? И животные. Их ячейки более организованы. У них есть структуры, называемые органеллами, для выполнения ряда клеточных функций, а их ДНК размещается в центральном отделении, называемом ядром.)

Общие характеристики

Среда обитания

Большинство водорослей обитают в водных средах обитания (Current Biology, 2014). ). Тем не менее, слово «водный» почти ограничено в своей способности охватить разнообразие этих сред обитания.Эти организмы могут процветать в пресноводных озерах или в соленых океанах. Они также могут выдерживать различные температуры, концентрации кислорода или углекислого газа, кислотность и мутность. Например, гигантские водоросли обитают на глубине более 200 метров ниже полярных ледяных щитов, согласно «Водорослям», в то время как одноклеточные зеленые водоросли вида Dunaliella salina обитают в очень соленых или гиперсоленых средах, таких как Мертвое море, согласно данным к обзорной статье 2005 года, опубликованной в журнале Saline Systems.Свободно плавающие, в основном одноклеточные водоросли, обитающие в освещенных областях воды, известны как планктонные. Те, которые прилипают к поверхности, известны как бентосные водоросли. Согласно «Водорослям», такие водоросли растут на грязи, камнях, других водорослях и растениях или животных.

Водоросли могут выжить и на суше. Некоторые неожиданные места, где они растут, - это стволы деревьев, мех животных, снежные берега, горячие источники (согласно «Водорослям») и почва, включая корки пустыни (Current Biology, 2014).

В основном водоросли живут независимо друг от друга в различных формах роста (отдельные клетки, колонии и т. Д.).), но они также могут образовывать симбиотические отношения с различными нефотосинтезирующими организмами, включая инфузории, губки, моллюски и грибы (например, лишайники). Одним из преимуществ таких взаимоотношений является то, что они позволяют водорослям расширять горизонты своей среды обитания.

Питание

Как правило, водоросли способны к фотосинтезу и производить собственное питание, используя солнечную энергию и углекислый газ для производства углеводов и кислорода.Другими словами, большинство водорослей являются автотрофами или, точнее, фотоавтотрофами (отражающими использование ими световой энергии для производства питательных веществ).

Однако существуют определенные виды водорослей, которым необходимо получать питание исключительно из внешних источников; то есть они гетеротрофны. Такие виды применяют множество гетеротрофных стратегий для получения питательных веществ из органических материалов (углеродсодержащих соединений, таких как углеводы, белки и жиры). Осмотрофия - это поглощение растворенных веществ, а фаготрофия - поглощение бактерий или другой подобной добычи.Другие водоросли, известные как ауксотрофы, должны получать только необходимые витамины, такие как комплекс B 12 или жирные кислоты (согласно «Водорослям»).

По словам авторов «Водорослей», широко распространено мнение, что стратегии питания водорослей существуют в спектре, сочетающем фотоавтотрофию и гетеротрофию. Эта способность известна как миксотрофия.

Размножение

Водоросли способны размножаться бесполым или вегетативным путем, а также половым путем.

Согласно авторам «Водорослей», бесполое размножение включает производство подвижных спор, в то время как вегетативные методы включают простое деление клеток (митоз) для получения идентичного потомства и фрагментацию колонии. Половое размножение включает объединение гамет (производимых индивидуально у каждого родителя посредством мейоза).

Цветущие водоросли в Северной Каролине, регионе страны, оборудованном для широкомасштабного выращивания водорослей. (Изображение предоставлено Ильдаром Сагдеевым через PNNL)

Классификация

Цианобактерии

Их также называют сине-зелеными водорослями.Хотя они способны проводить фотосинтез, производящий кислород, и живут во многих из тех же сред, что и эукариотические водоросли, цианобактерии являются грамотрицательными бактериями и, следовательно, прокариотами. Они также способны независимо проводить азотфиксацию, процесс преобразования атмосферного азота в пригодные для использования формы элемента, такие как аммиак.

Префикс «циано» означает синий. У этих бактерий есть пигменты, которые поглощают световые волны определенной длины и придают им характерный цвет.Многие цианобактерии содержат синий пигмент фикоцианин, светособирающий пигмент (он поглощает красные волны света). Все цианобактерии имеют ту или иную форму зеленого пигмента хлорофилла, который отвечает за сбор световой энергии в процессе фотосинтеза (Current Biology, 2014). Некоторые другие также содержат красный пигмент фикоэритрин, который поглощает свет зеленой областью и придает бактериям розовый или красный цвет.

Эукариотические водоросли

Эукариотические водоросли полифилетичны, что означает, что они не произошли от одного общего предка.Это ясно демонстрируется в нашем нынешнем понимании древа жизни - генеалогического древа всех живых организмов, организованного их различными эволюционными отношениями. Обнаружено, что эукариотические водоросли распределены среди множества различных групп или основных ветвей дерева.

В обзорной статье 2014 года, опубликованной в журнале Cold Spring Harbor Perspectives in Biology, автор Фабьен Буркилид выделяет пять супергрупп эукариотических организмов: Ophiskontha, Amoebozoa, Excavata, Archaeplastida и SAR (которые включают три группы: Stramenopiles, Alveolata и Rhizaria).

Archaeplastida включает растения и различные виды фотосинтезирующих водорослей, такие как хлорофиты (разновидность зеленых водорослей), харофиты (в основном пресноводные зеленые водоросли) и глаукоцистофиты (одноклеточные пресноводные водоросли). Хлорофиты - это зеленые водоросли, которые обычно образуют партнерские отношения лишайников с грибами.

Динофлагелляты обнаружены в альвеолатах. В первую очередь это одноклеточные морские и пресноводные организмы. Многие динофлагелляты утратили свои пластиды - место фотосинтеза - в ходе эволюции и являются фаготропными или живут как паразиты.Еще одни виды водорослей распространены среди Alveolata, Excavata, Rhizaria и Chromista (Current Biology, 2014).

Важность

Вероятно, самый важный вклад водорослей в нашу окружающую среду и благополучие - это производство кислорода посредством фотосинтеза. «Водоросли незаменимы, потому что они производят около половины кислорода в атмосфере Земли», - сказал Грэм LiveScience.

Согласно обзорной статье 2010 года, опубликованной в журнале Biofuels, нефть частично получают из отложений древних водорослей.«Некоторые очень старые нефтяные месторождения приписываются цианобактериям, хотя имена производителей все еще не определены», - сказал Грэм. «Более молодые нефтяные отложения, вероятно, возникли из морских зеленых водорослей эукариот, кокколитофорид и другого микроскопического морского фитопланктона». Эти нефтяные месторождения являются ограниченным ресурсом и постепенно истощаются людьми. В результате исследователи ищут альтернативы возобновляемым источникам энергии.

Биотопливо из водорослей - многообещающая замена ископаемым видам топлива. Все водоросли обладают способностью вырабатывать богатые энергией масла, а некоторые виды микроводорослей естественным образом накапливают большое количество масла в своей сухой массе.Кроме того, водоросли обитают в различных средах обитания и могут быстро воспроизводиться. Они также эффективно используют углекислый газ. «Водоросли помогают поддерживать стабильный уровень углекислого газа в атмосфере, накапливая [газ] в органических материалах, включая нефтяные отложения и неорганические карбонатные породы», - сказал Грэм. Зеленые водоросли, диатомовые водоросли и цианобактерии - это лишь некоторые виды микроводорослей, которые считаются хорошими кандидатами для производства биотоплива (Biofuels, 2010).

Цветение водорослей

Водоросли в форме цветения водорослей получают плохую репутацию за создание токсичных условий в океанах и озерах.По данным Агентства по охране окружающей среды (EPA), «цветение водорослей» относится к безудержному росту определенных микроводорослей, что, в свою очередь, приводит к выработке токсинов, нарушению естественных водных экосистем и увеличивает затраты на очистку воды. Цветки приобретают цвет содержащихся в них водорослей. Грэм утверждает, что основными продуцентами токсинов в океанах являются определенные динофлагелляты и диатомовые водоросли. В пресных водах цианобактерии являются основными продуцентами токсинов, хотя некоторые эукариотические водоросли также вызывают проблемы.В естественных условиях Грэм отмечает, что водоросли используют токсины, чтобы защитить себя от поедания мелких животных, и им нужно лишь небольшое количество, чтобы защитить себя.

Основной причиной цветения водорослей является явление, называемое загрязнением питательными веществами. При загрязнении питательными веществами возникает избыток азота и фосфора, что может подтолкнуть водоросли к безудержному росту. Явление вызвано разнообразной деятельностью человека. По данным Агентства по охране окружающей среды, удобрения, которые мы используем в сельском хозяйстве и навоз, богаты азотом, в то время как неправильно очищенные сточные воды содержат много азота и фосфора.

«В обществе широко распространено мнение, что водоросли ядовиты и их следует устранять при любой возможности. Но это представление неверно, потому что водоросли производят кислород, рыбу [они являются основным источником пищи для водных организмов], масло и многое другое. другие полезные материалы », - сказал Грэм LiveScience. «Только несколько видов вызывают проблемы, и худший из них - Homo sapiens ».

Дополнительные ресурсы

.

водорослей | Факты, классификация и примеры

Водоросли , единичные водоросли , члены группы преимущественно водных фотосинтезирующих организмов царства протистов. У водорослей есть много типов жизненных циклов, и они варьируются по размеру от микроскопических видов Micromonas до гигантских водорослей, достигающих 60 метров (200 футов) в длину. Их фотосинтетические пигменты более разнообразны, чем у растений, а их клетки имеют особенности, которых нет у растений и животных.Помимо своей экологической роли в качестве продуцентов кислорода и в качестве пищевой основы почти для всех водных организмов, водоросли имеют экономическое значение как источник сырой нефти, а также как источники пищи и ряда фармацевтических и промышленных продуктов для людей. Систематика водорослей спорно и подвержены быстрому изменению, как обнаружил новую молекулярную информацию. Изучение водорослей называется phycology , и человек, изучающий водоросли, является фикологом.

Макроскопический род водорослей, известный как Acetabularia , обычно называют «бокалом для вина русалки» из-за характерной зонтичной формы кончиков его стеблей.

Роберт В. Хошоу / Британская энциклопедия, Inc.

Британская викторина

Викторина "Все о биологии"

Как еще называют так называемую морскую осу? На каком континенте обитают две ядовитые ящерицы в мире? Проверьте свои навыки, ответив на эти и другие вопросы, в этой викторине, посвященной биологии.

В этой статье водоросли определяются как эукариотические (ядерные) организмы, которые фотосинтезируют, но не имеют специализированных многоклеточных репродуктивных структур растений, которые всегда содержат фертильные клетки, продуцирующие гаметы, окруженные стерильными клетками. У водорослей также отсутствуют настоящие корни, стебли и листья - черты, которые они разделяют с бессосудистыми низшими растениями (например, мхами, печеночниками и роголистниками). Кроме того, рассматриваемые в этой статье водоросли исключают прокариотические (лишенные ядер) сине-зеленые водоросли (цианобактерии).

Начиная с 1830-х годов водоросли были классифицированы на основные группы в зависимости от цвета, например, красные, коричневые и зеленые. Цвета являются отражением различных пигментов хлоропластов, таких как хлорофиллы, каротиноиды и фикобилипротеины. Выявлено гораздо больше трех групп пигментов, и каждый класс водорослей имеет общий набор типов пигментов, отличный от всех других групп.

Зеленые водоросли Ulva lactuca , широко известные как морской салат, легко собираются во время отлива.Многие люди, живущие в прибрежных странах, употребляют морской салат в салатах и ​​супах.

Элисон Уилсон

Водоросли не имеют близкого родства в эволюционном смысле, и филогения группы еще предстоит определить. Определенные группы водорослей имеют общие черты с простейшими и грибами, которые без присутствия хлоропластов и фотосинтеза в качестве разграничивающих свойств затрудняют их отличие от этих организмов. Действительно, некоторые водоросли, по-видимому, имеют более тесные эволюционные отношения с простейшими или грибами, чем с другими водорослями.

зубчатая накладка

Fucus serratus , обычно называемая зубчатой ​​головкой.

Хизер Ангел Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской. Подпишитесь сегодня

В этой статье рассматриваются водоросли с точки зрения их морфологии, экологии и эволюционных особенностей. Для обсуждения связанных простейших, см. статьи простейшие и простейшие. Для более полного обсуждения фотосинтеза, см. статей о фотосинтезе и растениях.

.

водорослей | Факты, классификация и примеры

Водоросли , единичные водоросли , члены группы преимущественно водных фотосинтезирующих организмов царства протистов. У водорослей есть много типов жизненных циклов, и они варьируются по размеру от микроскопических видов Micromonas до гигантских водорослей, достигающих 60 метров (200 футов) в длину. Их фотосинтетические пигменты более разнообразны, чем у растений, а их клетки имеют особенности, которых нет у растений и животных.Помимо своей экологической роли в качестве продуцентов кислорода и в качестве пищевой основы почти для всех водных организмов, водоросли имеют экономическое значение как источник сырой нефти, а также как источники пищи и ряда фармацевтических и промышленных продуктов для людей. Систематика водорослей спорно и подвержены быстрому изменению, как обнаружил новую молекулярную информацию. Изучение водорослей называется phycology , и человек, изучающий водоросли, является фикологом.

Макроскопический род водорослей, известный как Acetabularia , обычно называют «бокалом для вина русалки» из-за характерной зонтичной формы кончиков его стеблей.

Роберт В. Хошоу / Британская энциклопедия, Inc.

Британская викторина

Викторина "Все о биологии"

Как еще называют так называемую морскую осу? На каком континенте обитают две ядовитые ящерицы в мире? Проверьте свои навыки, ответив на эти и другие вопросы, в этой викторине, посвященной биологии.

В этой статье водоросли определяются как эукариотические (ядерные) организмы, которые фотосинтезируют, но не имеют специализированных многоклеточных репродуктивных структур растений, которые всегда содержат фертильные клетки, продуцирующие гаметы, окруженные стерильными клетками. У водорослей также отсутствуют настоящие корни, стебли и листья - черты, которые они разделяют с бессосудистыми низшими растениями (например, мхами, печеночниками и роголистниками). Кроме того, рассматриваемые в этой статье водоросли исключают прокариотические (лишенные ядер) сине-зеленые водоросли (цианобактерии).

Начиная с 1830-х годов водоросли были классифицированы на основные группы в зависимости от цвета, например, красные, коричневые и зеленые. Цвета являются отражением различных пигментов хлоропластов, таких как хлорофиллы, каротиноиды и фикобилипротеины. Выявлено гораздо больше трех групп пигментов, и каждый класс водорослей имеет общий набор типов пигментов, отличный от всех других групп.

Зеленые водоросли Ulva lactuca , широко известные как морской салат, легко собираются во время отлива.Многие люди, живущие в прибрежных странах, употребляют морской салат в салатах и ​​супах.

Элисон Уилсон

Водоросли не имеют близкого родства в эволюционном смысле, и филогения группы еще предстоит определить. Определенные группы водорослей имеют общие черты с простейшими и грибами, которые без присутствия хлоропластов и фотосинтеза в качестве разграничивающих свойств затрудняют их отличие от этих организмов. Действительно, некоторые водоросли, по-видимому, имеют более тесные эволюционные отношения с простейшими или грибами, чем с другими водорослями.

зубчатая накладка

Fucus serratus , обычно называемая зубчатой ​​головкой.

Хизер Ангел Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской. Подпишитесь сегодня

В этой статье рассматриваются водоросли с точки зрения их морфологии, экологии и эволюционных особенностей. Для обсуждения связанных простейших, см. статьи простейшие и простейшие. Для более полного обсуждения фотосинтеза, см. статей о фотосинтезе и растениях.

.

Какое экологическое значение имеют водоросли?

Джозеф Кипроп, 28 сентября 2018 г., Окружающая среда

Водоросли на поверхности озера. Водоросли производят кислород, необходимый для водных организмов.

Что такое водоросли?

Слово «водоросли» обычно относится к большому количеству растений, имеющих одно название, но не связанных между собой.Хотя точное происхождение слова водоросли неизвестно, форма единственного числа, водоросль, - это латинское слово, обозначающее водоросли. Некоторые этимологи предположили, что термин «водоросли» может иметь свои корни в латинском языке от слова algēre, которое относится к холоду. Однако эта теория встречает большие возражения, поскольку связь между растениями и температурой исключительно мала.

Водоросли могут варьироваться от простых одноклеточных организмов до более сложных многоклеточных организмов, таких как гигантские водоросли.Исследования некоторых видов водорослей показали, что у них нет специализированных тканей, присутствующих в наземных растениях, таких как ксилема, флоэма и устьица. Отсутствие этих клеток является эволюционной адаптацией к регионам произрастания растений.

Водоросли существуют в мире в течение длительного периода, при этом возраст некоторых окаменелостей, обнаруженных в бассейне Виндхья, составляет около 2 миллиардов лет. Ученые тщательно изучили характер распространения водорослей, поскольку они встречаются в значительном количестве областей по всему миру, где они выполняют несколько жизненно важных функций.

Экологическое значение водорослей

Как источник кислорода

Одной из наиболее важных ролей, которые водоросли играют в окружающей среде, является производство кислорода в качестве побочного продукта в процессе фотосинтеза.Одним из сходств между наземными растениями и несколькими видами водорослей является наличие хлорофилла, который позволяет им образовывать молекулы органических продуктов питания, используя энергию солнца и углекислый газ. Этот процесс важен для выживания водорослей, поскольку молекулы пищи обеспечивают их энергией. После завершения процесса выделяется кислород.

Из-за большого количества водорослей в мире он отвечает за производство более 30% кислорода, необходимого для выживания наземных животных.По некоторым оценкам, количество кислорода, производимого водорослями, близко к 50% от того, что нужно наземным животным. Если водоросли отмирают из-за истощения запасов минералов в воде, разложение и последующее снижение выработки кислорода могут привести к гибели рыбы.

Водоросли также используют кислород для дыхания. Несмотря на то, что водоросли вносят значительный вклад в доступный в мире кислород, они могут в определенных условиях вызывать снижение уровня кислорода в прудах и озерах.

Как источник питания

Водоросли занимают положение производителей в пищевой цепи, а это означает, что с них начинаются многочисленные пищевые цепочки. Они чрезвычайно важны, потому что являются источником пищи для большого количества водных животных, от головастиков до рыб, таких как сом и сиамский водоросль. Жизнь в океане в значительной степени зависит от водорослей, поскольку организмы, питающиеся водорослями, поедаются более крупными видами, обеспечивая продолжение жизни в море.

Люди в различных сообществах, особенно в азиатских, также потребляют водоросли. Люди, которые едят водоросли, хвалят его за высокую пищевую ценность. Большинство людей, которые едят водоросли, предпочитают есть разновидность хлореллы, поскольку доказано, что она содержит исключительно большое количество хлорофилла в дополнение к другим питательным веществам, важным для организма.Согласно исследованию, опубликованному в Journal of Cell Science, кормление растениями с высокой концентрацией хлорофилла приводит к попаданию химического вещества в кровоток. Попав в кровь, он может позволить людям естественным образом производить АТФ, богатую энергией молекулу, находясь на солнечном свете. Исследование также показало, что черви с оптимальным количеством хлорофилла в организме имеют более длительную продолжительность жизни, чем другие черви, что может указывать на то, что люди, принимающие достаточное количество хлорофилла, могут иметь более длительную продолжительность жизни.

Как индикатор загрязнения

Водоросли также важны, поскольку они могут указать, загрязнен ли водоем. По данным Ассоциации защиты озер штата Вашингтон, некоторые факторы делают водоросли подходящими для определения того, загрязнен ли водоем. Один из факторов - потребность в питательных веществах; Поскольку ученые уже изучили питательные вещества, необходимые водорослям для выживания, они могут делать выводы о состоянии воды на основе здоровья водорослей.Другой фактор заключается в том, что они быстро размножаются, и потомство можно проанализировать, чтобы проверить, похоже ли оно на своего предшественника, или загрязнение изменило его генетический состав. У водорослей также короткий жизненный цикл, что сокращает время, которое обычно требуется ученым для изучения этих видов на предмет загрязнения.

Водоросли также могут указывать на то, какие виды загрязнителей влияют на водоем, поскольку разные загрязнители по-разному влияют на его рост.Сельскохозяйственные химикаты, особенно удобрения, содержат большую концентрацию таких химических веществ, как фосфор и азот, которые способствуют быстрому росту водорослей. Другие загрязнители содержат высокий уровень тяжелых металлов, которые при поглощении водорослями в достаточном количестве могут подавлять рост растений.

В качестве среды обитания

Крупные виды водорослей способствуют росту и распространению водных организмов, поскольку они обеспечивают среду обитания для нескольких видов.Леса водорослей являются примерами крупных видов водорослей, которые обеспечивают среду обитания многочисленным организмам. В одном лесу ламинарии часто можно встретить несколько видов ламинарии. Животные, которые могут находиться в лесах ламинарии, включают голожаберников, улиток, креветок-скелетов и морских ежей.

Как индикатор изменения климата

Согласно исследованию, опубликованному на Irish Marine Life, водоросли могут использоваться как индикатор изменения климата.Большое количество водорослей в окружающей среде поглощает огромное количество углекислого газа, уменьшая накопление газа в атмосфере. Исследование показывает, что, сравнивая исторические данные о росте водорослей с недавними данными о их распространении, можно сделать выводы об изменении климата с годами.

Экономическое значение водорослей

Помимо того, что водоросли играют жизненно важную роль в мировой экологии, они также играют важную роль в мировой экономике.Исследования показывают, что водоросли могут использоваться в сельском хозяйстве для производства удобрений из-за высокого содержания питательных веществ. Водоросли также используются при очистке сточных вод для удаления токсичных частиц. Водоросли также важны при производстве лекарств, особенно антибиотиков, таких как хлореллин.

.

водорослей | Факты, классификация и примеры

Водоросли , единичные водоросли , члены группы преимущественно водных фотосинтезирующих организмов царства протистов. У водорослей есть много типов жизненных циклов, и они варьируются по размеру от микроскопических видов Micromonas до гигантских водорослей, достигающих 60 метров (200 футов) в длину. Их фотосинтетические пигменты более разнообразны, чем у растений, а их клетки имеют особенности, которых нет у растений и животных.Помимо своей экологической роли в качестве продуцентов кислорода и в качестве пищевой основы почти для всех водных организмов, водоросли имеют экономическое значение как источник сырой нефти, а также как источники пищи и ряда фармацевтических и промышленных продуктов для людей. Систематика водорослей спорно и подвержены быстрому изменению, как обнаружил новую молекулярную информацию. Изучение водорослей называется phycology , и человек, изучающий водоросли, является фикологом.

Макроскопический род водорослей, известный как Acetabularia , обычно называют «бокалом для вина русалки» из-за характерной зонтичной формы кончиков его стеблей.

Роберт В. Хошоу / Британская энциклопедия, Inc.

Британская викторина

Викторина "Все о биологии"

Как еще называют так называемую морскую осу? На каком континенте обитают две ядовитые ящерицы в мире? Проверьте свои навыки, ответив на эти и другие вопросы, в этой викторине, посвященной биологии.

В этой статье водоросли определяются как эукариотические (ядерные) организмы, которые фотосинтезируют, но не имеют специализированных многоклеточных репродуктивных структур растений, которые всегда содержат фертильные клетки, продуцирующие гаметы, окруженные стерильными клетками. У водорослей также отсутствуют настоящие корни, стебли и листья - черты, которые они разделяют с бессосудистыми низшими растениями (например, мхами, печеночниками и роголистниками). Кроме того, рассматриваемые в этой статье водоросли исключают прокариотические (лишенные ядер) сине-зеленые водоросли (цианобактерии).

Начиная с 1830-х годов водоросли были классифицированы на основные группы в зависимости от цвета, например, красные, коричневые и зеленые. Цвета являются отражением различных пигментов хлоропластов, таких как хлорофиллы, каротиноиды и фикобилипротеины. Выявлено гораздо больше трех групп пигментов, и каждый класс водорослей имеет общий набор типов пигментов, отличный от всех других групп.

Зеленые водоросли Ulva lactuca , широко известные как морской салат, легко собираются во время отлива.Многие люди, живущие в прибрежных странах, употребляют морской салат в салатах и ​​супах.

Элисон Уилсон

Водоросли не имеют близкого родства в эволюционном смысле, и филогения группы еще предстоит определить. Определенные группы водорослей имеют общие черты с простейшими и грибами, которые без присутствия хлоропластов и фотосинтеза в качестве разграничивающих свойств затрудняют их отличие от этих организмов. Действительно, некоторые водоросли, по-видимому, имеют более тесные эволюционные отношения с простейшими или грибами, чем с другими водорослями.

зубчатая накладка

Fucus serratus , обычно называемая зубчатой ​​головкой.

Хизер Ангел Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской. Подпишитесь сегодня

В этой статье рассматриваются водоросли с точки зрения их морфологии, экологии и эволюционных особенностей. Для обсуждения связанных простейших, см. статьи простейшие и простейшие. Для более полного обсуждения фотосинтеза, см. статей о фотосинтезе и растениях.

.

Смотрите также