Почему атмосферное давление зависит от высоты


Как с высотой изменяется атмосферное давление. Формула, график

Не все знают, что на разной высоте давление атмосферы отличается. Существует даже специальный прибор для измерения и давления, и высоты. Называется он барометр-альтиметр. В статье мы подробно изучим, как с высотой изменяется атмосферное давление и при чем тут плотность воздуха. Рассмотрим эту зависимость на примере графика.

Давление атмосферы на разных высотах

Атмосферное давление зависит от высоты. При ее увеличении на 12 м давление уменьшается на 1 мм ртутного столба. Этот факт можно записать с помощью такого математического выражения: ∆h/∆P=12 м/мм рт. ст. ∆h — это изменение высоты, ∆P — изменение атмосферного давления при изменении высоты на ∆h. Что из этого следует?

Из формулы видно, как с высотой изменяется атмосферное давление. Значит, если мы поднимемся на 12 м, то АД уменьшится на 12 мм ртутного столба, если на 24 м — то на 2 мм ртутного столба. Таким образом, измеряя атмосферное давление, можно судить о высоте.

Миллиметры ртутного столба и гектопаскали

В некоторых задачах давление выражается не в миллиметрах ртутного столба, а в паскалях или гектопаскалях. Запишем вышеприведенное соотношение для случая, когда давление выражено в гектопаскалях. 1 мм рт. ст. =133,3 Па =1,333 гПа.

Теперь выразим соотношение высоты и атмосферного давления не через миллиметры ртутного столба, а через гектопаскали. ∆h/∆P=12 м/1,333 гПа. После вычисления получим: ∆h/∆P=9 м/гПа. Выходит, что когда мы поднимаемся на 9 метров, то давление уменьшается на один гектопаскаль. Нормальное давление — это 1013 гПа. Округлим 1013 до 1000 и примем, что на поверхности Земли именно такое АД.

Если мы поднимаемся на 90 м, как с высотой изменяется атмосферное давление? Оно уменьшается на 10 гПа, на 90 м — на 100 гПа, на 900 м — на 1000 гПа. Если на земле давление в 1000 гПа, а мы поднялись на 900 м вверх, то атмосферное давление стало нулевым. Так что, получается что атмосфера заканчивается на девятикилометровой высоте? Нет. На такой высоте есть воздух, там летают самолеты. Так в чем же дело?

Связь плотности воздуха и высоты. Особенности

Как с высотой изменяется атмосферное давление вблизи поверхности Земли? На этот вопрос уже ответила картинка выше. Чем больше высота, тем меньше плотность воздуха. Покуда мы находимся недалеко от поверхности земли, изменение плотности воздуха незаметно. Поэтому на каждую единицу высоты давление уменьшается примерно на одно и тоже значение. Два записанные нами ранее выражения нужно воспринимать как правильные, только если мы находимся недалеко от поверхности Земли, не выше 1-1,5 км.

График, показывающий как атмосферное давление изменяется с высотой

Теперь перейдем к наглядности. Построим график зависимости давления атмосферы от высоты. При нулевой высоте P0=760мм рт. ст. Из-за того, что с ростом высоты давление уменьшается, атмосферный воздух будет менее сжат, его плотность станет меньше. Поэтому на графике зависимость давления от высоты не будет описываться прямой линией. Что это значит?

Как с высотой изменяется атмосферное давление? Над поверхностью земли? На высоте 5,5 км оно уменьшается в 2 раза (Р0/2). Оказывается, что если мы поднимемся еще на такую же высоту, то есть на 11 км, давление уменьшится еще вдвое и будет равно Р0/4 и т. д.

Соединим точки, и мы увидим, что график — это не прямая, а кривая. Почему, когда мы записывали соотношение зависимости, складывалось впечатление, что на высоте 9 км атмосфера заканчивается? Мы считали, что график является прямой на любых высотах. Это было бы так, если бы атмосфера была жидкой, то есть если бы ее плотность была постоянной.

Важно понимать, что этот график является лишь фрагментом зависимости на малых высотах. Ни на какой точке этой линии давление не снижается до нуля. Даже в глубоком космосе существуют молекулы газов, которые, правда, не имеют отношение к земной атмосфере. Ни в одной точке Вселенной не существует абсолютного вакуума, пустоты.

Атмосферное давление. Урок 13

Земля путём силы гравитации притягивает к себе молекулы воздуха. Они имеют вес, а значит создают давление как внутри самой атмосферы, так и на её границе с различными телами на земной поверхности. Атмосферное давление – это сила, с которой воздух давит на земную поверхность и на все находящиеся на ней предметы.

Атмосферное давление изменяется с высотой и зависит от погодных условий: температуры воздуха и перемещения воздушных масс в вертикальном направлении (конвекции). Вблизи земной поверхности оно приблизительно равно 105 Па (в интернациональной системе (СИ) давление измеряется в Паскалях – русское Па, международное – Pa).

За нормальное атмосферное давление принято давление ртутного столба высотой 76 см сечением в 1 см2 на уровне моря на широте 45° при температуре 0°С. Оно равно 760 мм рт. ст.(101325 Па, но реально берётся 100 000 Па) – это 1 атмосфера (атм.).


<!— Реклама —>

Атмосферное давление по-традиции измеряют в миллиметрах ртутного столба, современные аналоги этой меры – миллибары и гектопаскали. Один Паскаль – это давление силой в 1 Ньютон (Н), приходящееся на площадь 1 м2.

Интересно, что среднее давление атмосферы на поверхности Марса в 160 раз меньше, чем у поверхности Земли.

Как заметить атмосферное давление?

Хотя молекулы газа не имеют запаха и цвета, они постоянно взаимодействуют с рецепторами нашей кожи, сдавливают со всех сторон все предметы, заполняют пустоты, а их быстрое перемещение в горизонтальном направлении, называемое ветром, может сбить нас с ног. Доказать, что атмосферное давление существует, можно при помощи простых опытов.

Опыт 1 – «Непроливайка»

В стакан налить воды до краёв. Прикрыть его листком плотной бумаги и, придерживая бумагу ладонью, быстро перевернуть стакан кверху дном. Убрать ладонь. Вода из стакана не выльется, так как на бумагу снизу давит атмосфера.

Объяснение: фраза «на нас давит столб атмосферного воздуха», иногда употребляемая, в том числе и в школьных учебниках, некорректна. Она произносится по ассоциации с силой давления, действующей со стороны твёрдого тела. Эта сила действует на тела, расположенные ниже, и не действует на тела сбоку или, тем более, сверху данного тела. Иное дело давление жидкости или газа.

По закону Паскаля давление передаётся не только в точки на дне сосуда, но также и в точки на стенках и крышке. Силы гидростатического и атмосферного давлений действуют перпендикулярно произвольно ориентированной поверхности тела, контактирующей со средой, и могут иметь любое направление.

Воздух, давящий на бумагу снизу наполненного стакана – это доказательство несостоятельности такой ассоциации. Интересно, что если стакан наполнить водой только наполовину, то оставшийся воздух будет давить с такой же силой, как и наружный, и бумага не удержит воду (и воздух) в стакане.

Опыт 2 – «Сухим из воды»

Положить на плоскую тарелку монету или металлическую пуговицу и налить воды. Монета окажется под водой. Наша задача – выловить монету голыми руками, не замочив их.

Зажгите внутри сухого стакана бумагу и, когда воздух нагреется, опрокиньте стакан на тарелку рядом с монетой так, чтобы монета не очутилась под стаканом. Ждать придётся недолго. Бумага в стакане сразу погаснет, и воздух начнёт остывать. По мере его остывания вода будет втягиваться стаканом и вскоре вся соберётся там, обнажив дно тарелки.

Объяснение: когда воздух в стакане нагрелся, он расширился, как и все нагретые тела, избыток его нового объёма вышел из стакана. Когда же оставшийся воздух начал остывать, его стало недостаточно, чтобы в холодном состоянии оказывать прежнее давление, уравновешивать наружное давление атмосферы. Теперь вода под стаканом испытывает на каждый сантиметр своей поверхности меньшее давление, чем в открытой части тарелки. Неудивительно, что она вгоняется под стакан, втискиваемая туда избытком давления наружного воздуха. Вода вдавливается воздухом!

По этой же теме посмотрите эксперимент программы «Галилео».

Почему мы не чувствуем атмосферное давление?

Зная, что 1 м3 воздуха при температуре 0° на уровне моря весит 1,3 кг, легко подсчитать, что на крышу дома, имеющую площадь, например 100 м², атмосфера давит с силой 107 Н, что соответствует весу тела массой 1000 т. Однако крыша дома не проваливается.

Площадь спины лежащего на пляже человека заведомо больше 0,2 м2; следовательно, атмосфера давит на спину человека с силой, большей чем 20 000 Н, что соответствует камешку массой 2 т. Однако человек вообще не ощущает никакого давления сверху.

Опыт «Сухим из воды» демонстрирует нам ещё и доказательство внутреннего давления, уравновешивающего наружное давление атмосферы.

Мы не чувствуем давления воздуха, потому что давление атмосферы равномерно распределяется со всех сторон и потому что внутри нас есть такое же давление воздуха и жидкости, а адаптационные способности организма постоянно уравновешивают внутреннее давление, подстраивая его под изменение атмосферного. Но адаптации проходят только в небольшом интервале. 

Если люди живут длительное время на большой высоте, то их организм приспосабливается как к меньшему количеству кислорода, так и к более низкому давлению. Самые высокогорные поселения мира:

  • Ла-Ринконада (Перу) – 5100 м;
  • Эль-Альто (Боливия) – 4150 м;
  • Потоси (Боливия) – 4090 м;
  • Лхаса (Т ибет) – 3650 м;
  • Намче-базар (Непал) – 3450 м;
  • в России это Куруш (Дагестан) – 2600 м.
Посёлок золотоискателей Ла Ринконада-Ананея, 5100 м.
Автор: IJISCAY

А вот рыбы, живущие на глубине океана, привыкли к более высокому давлению, и быстро перестроиться их организм не способен. Их тело адаптировалось к нему, и внутреннее давление его намного выше 1 атм. Поэтому когда их достают из глубины, они взрываются из-за высокого внутреннего давления. То же произошло бы и с человеком в безвоздушном пространстве (в космосе).

Фильм по теме «Атмосферное давление и самочувствие человека».

Из истории открытия знаний о весе, давлении воздуха и изобретении барометра

О том, как измерить атмосферное давление, догадался итальянский математик и физик, выпускник иезуитского колледжа Э. Торричелли. Вместе с В. Вивиани – юным учеником Галилея – он провёл опыты по его измерению. Торричелли тоже был одним из последних учеников Галилея, и основываясь на его догадках доказал, что воздух имеет вес и оказывает давление.

Эванжелиста Торричелли и его барометр.
Автор: Saperaud~commonswiki

Торричелли впервые открыто выступил против догм Аристотеля. Рассуждая о насосе, он заявил, что

«прежде всего вода поднимается вслед за поршнем вовсе не потому, что «природа боится пустоты», просто воду гонит в насос давление, которое оказывает воздух на поверхность реки. В трубе же насоса, под поршнем, воздуха нет, поэтому вода входит в неё до тех пор, пока вес водяного столба в трубе насоса не уравновесит наружное давление воздуха».

Но доказал он это немного позже. Предложенный им опыт был осуществлён в 1643 г. В этом опыте использовалась запаянная с одного конца стеклянная трубка длиной около 1 м. Её наполняли ртутью и, закрыв пальцем (чтобы ртуть не выливалась раньше времени), перевернув, опускали в широкую чашку со ртутью.

Часть ртути из трубки выливалась, и в её верхней части образовывался вакуум (первая настоящая пустота, обнаруженная на Земле – Торричеллиева пустота). При этом высота столба ртути в трубке оказалась равной примерно 760 мм (если отсчитывать её от уровня ртути в чашке). Воздух давил на ртуть чашки и не давал вылиться из трубки.

Учёный также догадался, что давление атмосферы связано с изменением погоды. Наблюдая за высотой ртутного столба в трубке, Торричелли заметил, что атмосферное давление непостоянно и зависит от «теплоты или холода». Столбик в трубке то опускался, то поднимался, указывая на нужное деление шкалы. Вот почему в качестве одной из единиц давления взят миллиметр ртутного столба (мм рт. ст.). Тяжесть по-гречески «барос», и прибор Торричелли стали называть барометром.

Принцип действия барометра Торричелли

О давлении и весе воздуха почти одновременно с Торричелли догадался и другой известный учёный того времени – Декарт. Он объяснил, почему из продырявленного на дне флакона при закрытой крышке духи не вытекают, а при открытой вытекают, именно разностью в давлении воздуха на разные площади поверхности. Когда крышка флакона закрыта, поверхностное натяжение воды на небольшом отверстии способно удерживать жидкость во флаконе. При открытой крышке оно преодолевается силой давления воздуха и духи начинают вытекать. Декарт выдвинул гипотезу, что с высотой воздух становится реже, а значит, должно уменьшаться и его давление.

Уже после опытов Торричелли Декарт поручил талантливому французскому математику и физику Блезу Паскалю проверить его догадку – верно ли, что давление с высотой убывает. Для этого он должен был подняться в горы с трубкой Торричелли. Опустившийся вниз столбик ртути на высоте горы Пюи де Дом подтвердили гипотезы Торричелли и Декарта.

Паскаль сделал вывод:

«законы давления жидкостей, известные ещё со времён славного Архимеда и развитые голландцем Симеоном Стевином, во многом справедливы и для воздуха». 

Давление воздуха не замечается человеком, потому что по законам давления в жидкостях и газах оно направлено и в стороны, и вниз.

Как измеряют атмосферное давление?

Барометр Торричелли используют до сих пор. Этот простой прибор помогает определить примерную высоту над уровнем моря. Альпинисты берут его с собой высоко в горы. Барометр – обязательный прибор кабины каждого летательного аппарата, будь то самолёт или спутник Земли. В наши дни его «братья» спускаются и на дно морей. Из высотомеров они превратились в глубиномеры.

За три с лишним века барометры изменились: стали автоматическими, самозаписывающими, научились управлять другими механизмами.

Ртутный барометр измеряет атмосферное давление с наибольшей точностью

Старые ртутные барометры.
Автор: GianniG46

На метеорологических станциях давление атмосферного воздуха измеряют всё те же ртутные барометры, так как они обладают наибольшей точностью. Они работают по тому же принципу, что и изобретение Торричелли.

При измерении величины давления вводят поправки на температуру, так как при повышении температур, ртуть и шкала барометра расширяются. На практике пользуются готовой таблицей поправок, которая сразу же даёт нужную величину.

Мембранные барометры

Для измерения атмосферного давления применяют также мембранные манометры. Простейший мембранный манометр показан схематически на рис 1.

Рис. 1. Мембранный барометр

Тонкая упругая пластинка-мембрана 1 герметически закрывает коробку 2, из которой откачана часть воздуха. С мембраной соединён указатель 3, поворачивающийся около О на угол, зависящий от степени прогиба мембраны, которая в свою очередь зависит от разности измеряемой силы давления воздуха вне коробки и внутри коробки.

Такие манометры называют барометрами-анероидами. Их градуируют и выверяют по ртутному барометру. Они менее точны, зато более удобны в обращении, поскольку не содержат ртути. При определении давления анероидом вносятся три поправки (на шкалу, на температуру и дополнительная на прибор), указанные в сертификате прибора. Анероид может давать надежные показания только в том случае, если он время от времени подвергается тщательной проверке.

Барометр-анероид.
Изображение Wolfgang Eckert с сайта Pixabay

Анероид может быть градуирован непосредственно на высоту атмосферы. Такие анероиды называют альтиметрами; или высотомерами, они используются в авиалайнерах и позволяют пилоту контролировать высоту полёта.

Высотомер Булова Б-11, с самолёта-истребителя.
Автор: Дозиметр

Для непрерывной регистрации изменения атмосферного давления применяется самопишущий прибор — барограф . Приёмной частью барографа является несколько соединённых между собой малых анероидных коробок.

Другие приборы

Гипсотермометр (гипсометртермобарометрбаротермометр) — прибор для измерения атмосферного давления по температуре кипящей жидкости (обычно воды). Он более точен, чем анероид.

Состоит из кипятильника и термометра со шкалой, разделённой на 0°,01. Этот прибор обычно применяется в экспедиционных условиях для барометрического нивелирования.

Штормгласс – это химический или кристаллический барометр, состоящий из стеклянной колбы или ампулы, заполненных спиртовым раствором, в котором в определённых пропорциях растворены камфора, нашатырь и калийная селитра.
<!— Реклама —>

Этим химическим барометром активно пользовался во время своих морских путешествий английский гидрограф и метеоролог, вице-адмирал Роберт Фицрой, который тщательно описал поведение барометра, это описание используется до сих пор. Поэтому штормгласс также называют «Барометром Фицроя». В 1831–1836 гг. Фицрой возглавлял океанографическую экспедицию на корабле «Бигль», в которой участвовал Чарльз Дарвин.

Весной и осенью резкое падение показателей барометра предвещает ветреную погоду. Летом, в сильную жару, оно предупреждает о грозе. Зимой, особенно после продолжительных морозов, быстрое падение ртутного столба говорит о предстоящей перемене направления ветра, сопровождающейся оттепелью и дождём. Напротив, повышение ртутного столба во время продолжительных морозов предвещает снегопад.

Закономерности в изменении атмосферного давления и способ использования этих знаний

Почти вся масса атмосферы Земли сосредоточена в слое высотой примерно до 50 км. По достижении высоты 50 км ускорение свободного падения уменьшается всего лишь на 1,5% по сравнению с ускорением на уровне моря; поэтому можно принять, что в пределах всего 50-километрового слоя атмосферы ускорение свободного падения остается равным g = 9,8 м/с2.

Представляя атмосферный воздух в виде сплошной среды, мы, конечно, не должны забывать, что в действительности это газ. Давление — статистическая величина, выражаемая через усреднённый по многим молекулам квадрат скорости их хаотического движения. Сила давления на любую реальную или мысленно выделенную площадку в газе обусловлена хаотической бомбардировкой этой площадки множеством молекул.

Давление понижается с высотой и повышается при спуске в глубокие шахты. Причина – в разрежении  воздуха (уменьшении плотности) с подъёмом и уплотнении со спуском, ведь он притягивается землёй и около неё сосредоточена основная его масса. В нижней тропосфере давление с высотой уменьшается примерно на 1 мм на каждые 10,5 м. Это позволяет с помощью барометра-высотомера определять высоту места.

Как изменяется атмосферное давление с высотой?

На самом деле эта закономерность соблюдается только до высоты  в 1 км. Расстояние в метрах, на которое надо подняться или опуститься, чтобы атмосферное давление изменилось на 1 мб, называется барической ступенью. Барическая ступень на высоте от 0 до 1 км составляет 10,5 м, от 1 до 2 км – 11,9 м, на высоте 2-3 км барическая ступень равна 13,5 км. Величина барической ступени зависит от температуры. В тёплом воздухе она больше. Более точно барометрическая формула описана тут: https://ru.wikipedia.org/wiki/

На практике же часто пользуются особыми таблицами, которые позволяют более или менее приблизительно получать данные о высотах. Но для решения задач, не требующих высокой точности, можно пользоваться и средним значением. Можно оценить давление по разности высот, высчитать высоту по разности давления.

Задача 1

Альпинисты поднимаются на гору, высота которой 5100 м. У подножия горы давление составляет 720 мм рт. ст. Какое давление будет на вершине?

Решение:

При подъёме на 10,5 м давление снижается на 1 мм рт. ст.

1) Узнаем, на сколько мм. рт. ст. снизится давление при подъёме на эту гору. 5100:10,5=486 (на 486 мм рт. ст.)

2) Узнаем, каким будет давление на вершине. 720-486=234 (мм рт. ст.)

Ответ: На вершине будет давление в 234 мм рт. ст.

Задача 2

Определите, на какой высоте летит самолёт, если за бортом давление 450 мм рт. ст., а у поверхности Земли 750 мм рт. ст.

1) Определяем разность в давлении. 750-450=300 мм рт. ст. – столько раз по 10,5 метров поднялся самолёт.

2) Узнаем, на сколько метров поднялся самолёт. 10,5  Х  300 = 3150 (м)

Ответ: самолёт на высоте 3150 м.

Задача 3

У подножия холма барометр показывает давление – 761 мм рт. ст., а на вершине – 761 мм рт. ст. Чему равна высота холма?

Задача решается по тому же принципу, что и предыдущая.

1) 761-750=11 (мм рт. ст.)

2) 11 Х 10,5 = 115,5 (м)

Ответ: высота холма равна 115,5 м.

Атмосферное давление постоянно изменяется

Плотность воздуха зависит от температуры, температура же и является главной причиной изменения давления воздуха. Давление тёплого воздуха меньше, чем холодного. Это объясняется тем, что при нагревании воздух, как и все предметы, расширяется, его объём увеличивается и он перетекает в верхние слои на место менее нагретого воздуха, что приводит к уменьшению давления около земной поверхности.

На климатических и синоптических картах точки с одинаковыми показателями давления, приведённые к уровню моря, соединяют изолиниями, называемыми изобарами. Изобары бывают замкнутыми и незамкнутыми. Система замкнутых изобар с пониженным давлением в центре (Н) называется барическим минимумом, или циклоном. Система замкнутых изобар с повышенным давлением в центре (В) называется барическим максимумом, или антициклоном. Незамкнутые системы изобар – барический гребень, ложбина и седловина.

Все барические области делят на две группы: постоянные и сезонные (сохраняют характерные особенности давлений в течение определенного периода года).

Пояса давления на Земле

Давление на Земле распределяется зонально. В обобщённом виде эту зональность представляют в виде поясов:

  • на экваторе расположен пояс низкого давления – экваториальная депрессия;
  • к югу и северу от экватора до 30-40° широты – пояс повышенного давления;
  • на 60-70° с. и ю. ш. – пояса пониженного давления;
  • приполярные районы – пониженное давление.
Пояса атмосферного давления на Земле

На самом деле реальная картина распределения давления на поверхности земли гораздо сложнее.

Постоянные барические области

Постоянным остаётся экваториальный пояс пониженного давления, только смещая ось вслед за Солнцем. В июле она перемещается в Северное полушарие на 15-20° с. ш., в декабре – в Южное, на 5° ю. ш. Зимой над океаном и над сушей возникает сплошной пояс повышенного давления. Летом повышенное давление сохраняется над океанами, а над сушей образуется термическая депрессия и понижение давления. Постоянны и барические максимумы Антарктиды и Гренландии.

Над незамерзающими океанами и тёплыми течениями умеренной зоны и зимой и летом ярко выражены барические минимумы:

  • Исландский;
  • Алеутский.
Сезонные барические области

30-40° широты

Только зимой тут действительно наблюдается пояс высокого давления. Летом над материком оно становится низким, а над океанами, прогревающимися медленно, давление остаётся высоким и даже повышается. Другими словами барические максимумы в течение всего года здесь сохраняются только над океанами:

  • Северо-Атлантический;
  • Северо-Тихоокеанский;
  • Южно-Атлантический;
  • Южно-тихоокеанский;
  • Южно-Индийский.

Умеренные и субполярные

В умеренных и субполярных широтах северного полушария, где чередуются океаны и материки, давление над сушей и водой различное, особенно зимой. Над сушей летом – минимум, а зимой – максимум. Летом же во всём поясе давление пониженное. Зимой над охлаждёнными материками давление высокое, здесь возникают сезонные барические максимумы:

  • Азиатский, с центром над Монголией;
  • Северо-Американский (Канадский).

Суточное колебание давления атмосферы

Наблюдается и суточное колебание давления. Ночью наблюдается один максимум, а днём – один минимум. Дважды за сутки, утром и вечером, оно повышается и столько же раз понижается, после полуночи и после полудня.

Изменение давления в течение суток связано с температурой воздуха и зависит от её изменений. Годовые изменения зависят от нагревания материков и океанов в летний период и их охлаждения в зимнее время. Летом область пониженного давления создается на суше, а область повышенного давления над океаном.

Минимальная величина атмосферного давления – 641,3 мм рт.ст или 854 мб  – была зарегистрирована над Тихим океаном в урагане «Ненси», а максимальная – 815,85 мм рт.ст. или 1087 мб – в Туруханске зимой. Максимальное давление в России зарегистрировано в Красноярском крае в 1968 г – 870 мм рт. ст.

Все барические системы оказывают большое влияние на воздушные течения, погоду и климат на значительных территориях. О вызываемых ими ветрах мы поговорим в следующий раз.

Тест для закрепления изученного материала

Источники:

  1. Томилин А. Н., Теребинская Н. В. Для чего ничего? Очерки. /Л., «Дет. лит.», 1975.
  2. Я. И. Перельман. Занимательные задачи и опыты. — М.: «Детская литература», 1972.
  3. Физическая география: Справ. пособие для подгот. отд. вузов/Г. В. Володина, И. В. Душина, С. Г. Любушкина и др.; Под ред. К. В. Пашканга — М.: Высш. шк., 1991.
  4. Тарасов Л. В. Атмосфера нашей планеты. — М.: ФИЗМАТЛИТ, 2012.
  5. Савцов Т. М. Общее землеведение: Учеб. пособие для студ. высш. пед. учеб. заведений — М.: Издательский центр «Академия», 2003
  6. Дронов В. П. Землеведение. 5-6 кл.: Учебник/В. П. Дронов, Л. Е. Савельева. 5-е изд., стереотип. — М.: Дрофа, 2015.
  7. География 5-6 классы: учеб. для общеобразоват. учреждений / А. И. Алексеев, Е. К. Липкина, В. В. Николина и др.; Под ред А. И. Алексеева. — М.: Просвещение, 2012.

Вам будет интересно

Давление атмосферы. Связь атмосферного давления с температурой

  • ГДЗ
  • 1 Класс
    • Окружающий мир
  • 2 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Литература
    • Окружающий мир
  • 3 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Окружающий мир
  • 4 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Окружающий мир
  • 5 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Биология
    • История
    • География
    • Литература
    • Обществознание
    • Человек и мир
    • Технология
    • Естествознание
  • 6 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Биология
    • История
    • География
    • Литература
    • Обществознание
    • Технология
  • 7 Класс
    • Английский язык
    • Русский язык
    • Алгебра
    • Геометрия

Почему атмосферное давление зависит от высоты?

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.
поделиться знаниями или
запомнить страничку
  • Все категории
  • экономические 43,041
  • гуманитарные 33,493
  • юридические 17,882
  • школьный раздел 601,163
  • разное 16,740

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Какое нормальное атмосферное давление воздуха

Атмосферное давление

Вспомните из курса природоведения, что называют атмосферным давлением.

Понятие об атмосферном давлении.

Воздух невидимое и легкое. Однако и оно, как и всякая вещество, имеет массу и вес. Поэтому оно оказывает давление на земную поверхность и на все тела, на ней находятся.

Это давление определяется весом столба воздухавысотой с всю атмосферу — от земной поверхности до самой ее верхней границы.

Установлено, что такой столб воздуха давит на каждый 1 см2 поверхности ссилой в 1 кг 33 г (соответственно на 1 м2 — Более 10 т!)

Итак, атмосферное давление — Это сила, с которой воздух давит на земную поверхность и на все предметы на ней.

Поверхность тела человека составляет в среднем 1,5 м2. Согласно воздуха давить на нее весом в 15 т. Такое давление способно раздавитьвсе живое.

Почему же мы его не ощущаем? Это связано с тем, что внутричеловеческого организма также существует давление — внутренний, и он равно атмосферному.Если это равновесие нарушается, человек чувствует себя плохо.

Измерение атмосферного давления.

Атмосферное давление измеряют с помощью специального прибора — барометра. В переводе с греческого это слово означает «Измеритель тяжести».

На метеостанциях используют ртутный барометр. Основная его часть — стеклянная трубка длиной 1м, запаянная с одного конца. В нее налито ртуть — тяжелый жидкий металл.

Открытым концом трубка погружена в широкую чашу, также заполненную ртутью. При переворачивании ртуть из трубки вылилась только до определенного уровня и остановилась.

Почему же онаостановилась, а не вылилась вся? Потому что воздух оказывает давление на ртуть в чаше и невыпускает ее всю из трубки.

Если атмосферное давление уменьшается, то ртуть в трубке опускается и наоборот. По высоте столба ртути в трубке, на которую нанесена шкала,определяют величину атмосферного давления в миллиметрах.

На параллели 450 на уровне моря притемпературе воздуха 0 0С под давлением воздуха столбик ртутиподнимается в трубке на высоту 760 мм. Такое давление воздуха считается нормальным атмосферным давлением.

Если столб ртути в трубке поднимается выше 760 мм, то давление повышенный, Ниже — снижен.Следовательно, давление столба воздуха всей атмосферы уравновешивается весом столба ртутивысотой 760 мм.

В походах и экспедициях пользуются более удобнымприбором — барометром-анероид.»Анероид» в переводе с греческого означает «безридинний»:в нем нет ртути. Главной его частью является металлическая упругая коробочка, из которойскачали воздуха. Это делает ее очень чувствительной к изменениям давления извне.

Приповышенные давления она сжимается, при снижении — расширяется. Эти колебаниячерез особый механизм передаются стрелке, которая указывает на шкале величинуатмосферного давления в миллиметрах ртутного столба.

Зависимость давления от высоты местности и температуры воздуха.

Атмосферное давление зависит от высоты местности. Чем выше уровняморя, тем давление воздуха меньше. Он снижается, так как с поднятием уменьшаетсявысота столба воздуха, который давит на земную поверхность.

Кроме того, с высотой давление падает еще и потому, что уменьшается плотность самого воздуха. На высоте 5 кматмосферное давление снижается наполовину по сравнению с нормальным давлением на уровнеморя. В тропосфере с подъемом на каждые 100 м давление уменьшается примерно на 10мм рт. ст.

Зная, как изменяется давление, можно вычислить иабсолютное и относительное высоту места. Существует и особый барометр — высотомер, В котором наряду со шкалойатмосферного давления, есть и шкала высот.

Итак, для каждой местности будет характерен свой нормальное давление: на уровне моря — 760 мм рт.века, в горах в зависимости от высоты — ниже. Например, для Киева, лежащейна высотах 140-200 м над уровнем моря, нормальным будет среднее давление 746 мм рт. ст.

Атмосферное давление зависит и от температуры воздуха.При нагревании объем воздуха увеличивается, оно становится менее плотным и легким.

За этого уменьшается и атмосферное давление. При охлаждении происходят обратныеявления. Следовательно, с изменением температуры воздуха непрерывно меняется и давление.

В течение суток он дважды повышается (утром и вечером) и дважды снижается (После полудня и после полуночи). Зимой, когда воздух холодный и тяжелое, давлениевыше, чем летом, когда оно более теплоеи легкое.

Итак, за изменением давления можно предсказать изменения погоды. Снижение давленияуказывает на осадки, повышение — на сухую погоду. Изменение атмосферного давления влияети на самочувствие людей.

Распределение атмосферного давления на Земле.

Атмосферноедавление, как и температура воздуха, распределяется на Земле полосами: различаютпояса низкого и высокого давления. Их образование связано с нагревом иперемещением воздуха.

Над экватором воздух хорошо прогревается. От этогооно расширяется, становится менее плотным, а потому легче. Легче воздуха поднимаетсявверх — происходит восходящее движение воздуха. Поэтому там у поверхности Землитечение года устанавливается пояснизкого давления. Над полюсами, где в течение года температуры низкие, воздухохлаждается, становится более плотным и тяжелым.

Поэтому оно опускается -происходит нисходящее движение воздух — и увеличивается давление. Поэтому уполюсов образовались поясавысокогодавления. Воздух, поднявшееся над экватором, растекаетсяк полюсам.

Но, не доходя до них, на высоте оно охлаждается, становится тяжелееи опускается на параллелях 30-350 в обоих полушариях. Как следствие — тамобразуются поясавысокого давления. В умеренных широтах, на параллелях 60-650обоих полушарий образуются пояса низкого давления.

Таким образом, наблюдается тесная зависимость атмосферногодавления от распределения тепла и температур воздуха на Земле, когда восходящие инисходящие движения воздуха обуславливают неравномерное нагревание земной поверхности.

Вопросы и задания

1. Определите, сколько весит воздух, находящийсяв классе, если его длина 8 м, ширина 6 м, высота 3 м.

2. Почему атмосферное давление уменьшается с высотой?

3. Почему изменяется давление в одном и том жеместе? Как влияет на это изменение температуры воздуха?

4. Определите, примерно относительная высота горнойвершины, если у подошвы горы барометр показывает 720 мм, а на вершине — 420 мм.

5. Как распределяется атмосферное давление на Земле?

6. Вспомните, какая абсолютная высота вашейместности. Вычислите, который атмосферное давление можно считать нормальным для вашегоместности.

С какой силой атмосфера давит на человека?

Если сравнить это давление с грузом, какой вес каждый из нас носит на себе?

Атмосфера давит на человека с давлением (не с силой) в 1 атмосферу, уж простите за каламбур.

1 атм = 9,82 н/см2.

А вот все сравнения этого давления с грузом абсолютно некорректны. Человек не носит на себе столб воздуха и не испытывает силы, сдавливающей его.

По закону Паскаля давление в жидкостях и газах на данной глубине действует во всех направлениях одинаково, поэтому сила, давящая на человека сверху, уравновешивается силой, давящей на человека снизу (там ведь тоже воздух и с таким же давлением) .

Если быть абсолютно точным, то равнодействующая всех сил, действующих на человека со стороны атмосферы (она весьма невелика, около 0,6 н) , направлена как раз вверх, это Архимедова сила.

Давление внутри человека немного больше атмосферного (нормальное, как Вы, вероятно, знаете, ок. 120мм. рт. ст, в то время как атмосфера -760 мм. рт. ст.) . Так что, опять же, мы не сдавлены снаружи, а раздуты изнутри.

Атмосфера давит на человека с давлением (не с силой) в 1 атмосферу, уж простите за каламбур.

1 атм = 9,82 н/см2.

А вот все сравнения этого давления с грузом абсолютно некорректны.

Человек не носит на себе столб воздуха и не испытывает силы, сдавливающей его. По закону Паскаля давление в жидкостях и газах на данной глубине действует во всех направлениях одинаково, поэтому сила, давящая на человека сверху, уравновешивается силой, давящей на человека снизу (там ведь тоже воздух и с таким же давлением) .

Если быть абсолютно точным, то равнодействующая всех сил, действующих на человека со стороны атмосферы (она весьма невелика, около 0,6 н) , направлена как раз вверх, это Архимедова сила.

Давление внутри человека немного больше атмосферного (нормальное, как Вы, вероятно, знаете, ок. 120мм. рт. ст, в то время как атмосфера -760 мм. рт. ст.) . Так что, опять же, мы не сдавлены снаружи, а раздуты изнутри.

  • У поверхности Земли на 1 см2 площади атмосфера давит с силой, равной 1033 г, а на 1 м2 — уже 10333 кг.

Таким образом, тело взрослого человека испытывает тяжесть, равную 12-15 тыс. кг, или 12-15 т, а ладонь его руки — 150 кг. Однако этой тяжести человек не ощущает, так как внешнее давление уравновешивается давлением воздуха внутри тела.

Жизнь на Земле приспособлена именно к этому давлению, поэтому при подъеме на большие высоты самочувствие человека ухудшается не только из-за недостатка кислорода, но и низкого давления.

точно не помню но у Перельмана в Занимательной физике этот вопрос наглядно разбирался

смотря на какой глубине, на возвышеностях или в горах. чем глубже тем давление больше, а чем выше тем его меньше.

1,5 — 2 тонны (масса), а вес 15-20 т.

Исходя из формулы p=F/S, где p — атмосферное давление, F=mg — сила, S-площадь.

Атмосферное давление — давление атмосферы на все находящиеся в ней предметы и Земную поверхность. Атмосферное давление создаётся гравитационным притяжением воздуха к Земле.

В 1643 Эванджелиста Торричелли показал, что воздух имеет вес. Совместно с В. Вивиани, Торричелли провёл первый опыт по измерению атмосферного давления, изобретя трубку Торричелли (первый ртутный барометр) , — стеклянную трубку, в которой нет воздуха. В такой трубке ртуть поднимается на высоту около 760 мм.

На земной поверхности атмосферное давление изменяется от места к месту и во времени. Особенно важны определяющие погоду непериодические изменения атмосферного давления, связанные с возникновением, развитием и разрушением медленно движущихся областей высокого давления (антициклонов) и относительно быстро перемещающихся огромных вихрей (циклонов) , в которых господствует пониженное давление.

Отмечены колебания атмосферного давления на уровне моря в пределах 684 — 809 мм рт. ст.

Нормальным атмосферным давлением называют давление в 760 мм рт. ст. на уровне моря при температуре 15 °C. (Международная стандартная атмосфера — МСА) (101 325 Па) .

Атмосферное давление уменьшается по мере увеличения высоты, поскольку оно создаётся лишь вышележащим слоем атмосферы.

Зависимость давления от высоты описывается т. н. барометрической формулой. Высота, на которую надо подняться или опуститься, чтобы давление изменилось на 1 гПа, называется барической (барометрической) ступенью.

У земной поверхности при давлении 1000 гПа и температуре 0 °С она равна 8 м/гПа. С ростом температуры и увеличением высоты над уровнем моря она возрастает, т. е. она прямо пропорциональна температуре и обратно пропорциональна давлению.

Величина, обратная барической ступени, — вертикальный барический градиент, т.е. изменение давления при поднятии или опускании на 100 метров. При температуре 0 °C и давлении 1000 гПа он равен 12,5 гПа.

На картах давление показывается с помощью изобар — линий, соединяющих точки с одинаковым приземным атмосферным давлением, обязательно приведенным к уровню моря.

Атмосферное давление измеряется барометром.

В химии стандартным атмосферным давлением с 1982 года по рекомендации IUPAC считается давление ровно 100 кПа.

Атмосферное давление

Одна из удивительных особенностей жизни на Земле заключается в том, что фактически мы находимся на дне огромного воздушного океана. Этот океан воздуха называется «атмосфера» и состоит в основном из газов без цвета и запаха. Иными словами можно сказать, что атмосфера — это газовая оболочка Земли.

Почему мы не замечаем давления воздуха?

Сила всемирного тяготения притягивает все к Земле, в том числе и атмосферу — газовую оболочку планеты. При этом верхние слои атмосферы давят на нижние. Так и возникает атмосферное давление. Трудно поверить, но на небольшой стол размером 1x1 м действует давление, равное давлению, производимому 10 автомобилями. Если это действительно так, то почему же стол не ломается от такой тяжести?

На каждый квадратный сантиметр поверхности нашего тела воздух оказывает давление, приблизительно равное тому, какое оказывает груз массой 1 кг.

Этого не происходит, так как атмосферное давление передается во всех направлениях, а не только вниз. Более того, насколько ты помнишь, согласно третьему закону Ньютона, на этот стол действует такая же сила, но только снизу. И атмосферное давление уравновешивается этой силой.

Известно, что воздух давит на каждого из нас с силой, равной давлению груза массой более 15 т! Это масса трех больших грузовиков! Почему же наши тела не разрушаются под действием атмосферного давления? Дело в том, что воздух внутри каждого нашего органа также находится под давлением. И внутреннее давление воздуха уравновешивает давление, действующее на наше тело снаружи.

Мы не можем жить без атмосферного давления!

Странно, но факт: мы действительно не можем жить без атмосферного давления! Даже сейчас, когда ты читаешь эту статью, твое тело использует атмосферное давление, чтобы перемещать воздух в легкие и из них. Это говорит о том, что благодаря атмосферному давлению мы можем дышать.

Как же мы дышим?

Диафрагма — самая важная мышца при вдохе. Она попеременно сокращается и расслабляется, при этом изменяются объем легких и внутреннее давление в них. Когда объем легких увеличивается, то давление  в них снижается, т.е. оно становится ниже атмосферного, и воздух начинает поступать в легкие. Так происходит вдох. При повышении давления в легких воздух выходит. Это выдох.

Диафрагма во время дыхания

Как измерить атмосферное давление?

В середине XVII в. выдающийся итальянский математик и физик Эванджелиста Торричелли проделал следующий опыт. Он взял стеклянную трубку длиной около 1 м, запаянную с одного конца, и заполнил ее ртутью. Затем перевернул трубку и опустил ее в чашку с ртутью. Как выяснилось, некоторое количество ртути вылилось в чашку, а высота оставшегося в трубке столба ртути составила 760 мм. При этом над поверхностью ртути в трубке образовалось безвоздушное пространство.

Торричелли объяснил это явление следующим образом. На поверхность ртути в чашке действует атмосферное давление, которое передается в трубку. В связи с тем, что ртуть находится в равновесии, атмосферное давление равно давлению, которое создается весом столба ртути в трубке.

Изменение атмосферного давления

Торричелли также обратил внимание, что уровень столба ртути не находится на одном месте, он меняется: либо повышается, либо понижается. На основании своих ежедневных наблюдений ученый сделал вывод о том, что если давление повышается, то столб ртути в трубке также повышается, и наоборот. Как правило, колебания атмосферного давления связаны с изменениями погоды. Если давление падает, то следует ожидать дождь и ветер. В случае повышения давления ожидается улучшение погоды, а зимой — еще и похолодание.

Барометр

Прибор, предназначенный для измерения атмосферного давления, называется «барометр».

Торричелли изобрел ртутный барометр, в котором в качестве измерителя атмосферного давления служит столбик ртути. Такие барометры используются до сих пор.

Однако в настоящее время чаще применяются более современные безжидкостные приборы, так называемые анероидные барометры.

Высота ртути в трубке, равная 760 мм, принята за эталон нормального атмосферного давления, которое можно измерять высотой ртутного столба (в мм). Когда говорят, что атмосферное давление равно, например, 755 мм ртутного столба (мм рт. ст.), это означает, что воздух производит такое же давление, что и столб ртути высотой 755 мм рт. ст.

Как мы реагируем на изменения атмосферного давления?

Наш организм приспособлен для проживания в условиях нормального атмосферного давления, и, к сожалению, любые изменения внешнего давления сказываются на нашем самочувствии.

Ты уже знаешь, что нормальным атмосферным давлением для человека считается давление 760 мм рт. ст. Однако такие показатели барометр фиксирует не так часто. Это связано с тем, что давление на поверхности Земли непостоянно и неравномерно. Величина атмосферного давления зависит от времени суток, поры года и различных географических условий. Как правило, суточные колебания давления — не более 4—5 мм. Такую незначительную разницу мы не замечаем и хорошо переносим.

У людей, живущих в Перуанских Андах на высоте 4500 м над уровнем моря, акклиматизация начинается с раннего детства. Даже их внутренние органы приспосабливаются к местным условиям. Так, размер грудной клетки жителя гор гораздо больше, чем человека, живущего на равнине

Давление на высоте

Ты уже знаешь, что верхние слои атмосферы оказывают давление на нижние. Это означает, что у поверхности Земли воздух максимально сжат. Однако чем выше мы поднимаемся над Землей, тем меньше становится слоев воздуха, которые сжимают нижние слои, и соответственно, уменьшается давление. Именно такие перепады давления мы сразу же ощущаем на себе.

Запомни: чем больше высота, тем меньше атмосферное давление

Почему мы это ощущаем

На земле давление воздуха в барабанной полости уха равно нормальному атмосферному давлению. А при наборе самолетом высоты давление снижается, и возникает разница давлений, т.е. наша ушная перепонка оказывается вдавленной. Именно поэтому мы и ощущаем заложенность в ухе.

Наиболее знакомый пример — «закладывание» ушей в самолете при взлете. Как облегчить это состояние? Есть варианты:

  1. Широко открыть рот.
  2. Сделать несколько глотательных движений.

Перепады давления в горах

В горах на высоте 2500—3000 м над уровнем моря атмосферное давление гораздо ниже, чем у подножия. В таких условиях из-за разницы давления внутри организма и атмосферного давления наш организм подвергается значительному стрессу. Более того, не исключено появление признаков горной болезни: могут возникнуть боль в ушах, затруднение дыхания, тошнота и слабость.

У тренированных альпинистов и людей, постоянно проживающих в горной местности, такое недомогание встречается крайне редко. Это связано с тем, что их организм уже приспособился к условиям пониженного давления.

Давление под водой и под землей

Представители некоторых профессий вынуждены работать в условиях пониженного давления воздуха. Это шахтеры, водолазы и рабочие кессонов — специальных конструкций, используемых для постройки мостов и других водных сооружений. Опускаясь в глубокую шахту, шахтеры испытывают на себе действие повышенного атмосферного давления. В очень глубоких шахтах оно может достигать около 850 мм рт. ст.

Давление под водой также намного превышает атмосферное. Так, например, при погружении на глубину около 100 м на водолаза будет действовать давление, которое больше атмосферного приблизительно в 10 раз!

Сложности работы водолаза

Погружение на глубину возможно только в специальных водолазных костюмах, причем резиновый скафандр используется для погружения не более чем на 40 м. Работать на больших глубинах можно только в жестком скафандре, который принимает на себя все давление воды

При длительном нахождении водолаза в условиях высокого давления воды часть воздуха, которым он дышит, растворяется в крови. При этом азот, содержащийся в воздухе, организмом не используется, а накапливается в крови. Во время подъема на поверхность азот выделяется в виде пузырьков, которые могут закупорить кровеносные сосуды. Для того чтобы не допустить возникновения этих проблем, водолаза поднимают очень медленно!

Если в течение часа водолаз работал на глубине 30 м, то выход на поверхность осуществляется в течение часа, а если тот же час водолаз провел на глубине 60 м, то подъем длится 6 часов!

Поделиться ссылкой

Почему атмосферное давление меняется с высотой?

Меню Главная Поиск Закрыть Поиск Поиск
  • Главная
  • Исследование
    • Исследование
    • Обзор
    • Акустика
      • Вернуться к исследованиям
      • Акустика

      • УЗИ
      • Подводная акустика
    • Биологические науки
      • Вернуться к исследованиям
      • Биологические науки

      • Биометрология
      • Масс-спектрометрическая визуализация
      • Поверхностная техника
    • Химический анализ
      • Вернуться к исследованиям
      • Химический анализ

      • Электрохимия
      • Метрология газа и частиц
      • Поверхностная техника
      • Масс-спектрометрии
    • Связь
      • Вернуться к исследованиям
      • Связь

      • Электромагнетизм
      • Квантовое обнаружение
      • Время и частота
    • Наука о данных
    • Инженерное дело
      • Вернуться к исследованиям
      • Машиностроение

      • Измерение размеров
      • Электрохимия
      • Электронные и магнитные материалы
      • Массовые и механические измерения
      • Температура и влажность
    • Мониторинг окружающей среды
      • Вернуться к исследованиям
      • Экологический мониторинг

      • Наблюдение Земли, климат и оптика
      • Эмиссии и атмосферная метрология
      • Метрология газа и частиц
      • Температура и влажность
      • Подводная акустика
    • Графен
    • Ионизирующее излучение
      • Вернуться к исследованиям
      • Ионизирующее излучение

      • Дозиметрия излучения
      • Ядерная метрология
    • Материалы
      • Вернуться к исследованиям
      • Материалы

      • Современные материалы
      • Измерение размеров
      • Электрохимия
      • Электронные и магнитные материалы
      • Графен
      • Поверхностная техника
    • Медицинская физика
    • Квантовый
      • Вернуться к исследованиям
      • Квантовая

      • Квантовая технология
      • Время и частота
    • Время и частота
  • Продукты и услуги
    • Продукты и услуги
    • Товары и услуги от А до Я
    • Консультирование
    • Калибровка
    • Тренировка
    • Инструменты
.

Как атмосферное давление меняется с высотой?

Химия
Наука
  • Анатомия и физиология
  • Астрономия
  • Астрофизика
  • Биология
  • Химия
  • наука о планете Земля
  • Наука об окружающей среде
  • Органическая химия
  • Физика
Математика
  • Алгебра
.

Высота и атмосферное давление, полет и тело человека

Высота и атмосферное давление

С увеличением высоты атмосферное давление уменьшается. В среднем, с увеличением высоты на каждые 1000 футов атмосферное давление уменьшается на 1 “рт. По мере снижения давления воздух становится менее плотным или разреженным. Это эквивалент нахождения на большей высоте и называется высотой плотности. По мере уменьшения давления плотность высоты увеличивается и оказывает заметное влияние на летно-технические характеристики самолета.

Различия в плотности воздуха, вызванные изменениями температуры, приводят к изменению давления. Это, в свою очередь, создает движение в атмосфере как по вертикали, так и по горизонтали в виде течений и ветра. Атмосфера почти постоянно находится в движении, стремясь достичь равновесия. Эти бесконечные движения воздуха вызывают цепные реакции, вызывающие постоянное разнообразие погоды.

Рекомендуется летная грамотность
Разъяснения по радиолокационным изображениям Мачадо - Этот курс поможет вам определить конвективную погоду, которой необходимо избегать, и способы «избежать ее» с помощью радиолокационных изображений кабины.Обязательный курс для пилотов IFR, использующих погодные условия из кабины восходящей связи. Ценный курс для любого пилота VFR с погодой в кабине, подключенного к восходящей связи, который хочет принимать лучшие решения по предотвращению погодных условий.

Высота и полет

Высота влияет на все аспекты полета, от характеристик самолета до возможностей человека. На больших высотах при пониженном атмосферном давлении взлетно-посадочная дистанция увеличивается, а скорость набора высоты уменьшается.

Когда самолет взлетает, подъемная сила создается за счет потока воздуха вокруг крыльев.Если воздух разрежен, требуется большая скорость для получения достаточной подъемной силы для взлета; следовательно, пробег по земле длиннее. Самолету, которому требуется 745 футов наземного пробега на уровне моря, требуется более чем вдвое больше, чем на барометрической высоте 8000 футов. [Рисунок 12-9]. Верно также и то, что на больших высотах из-за меньшей плотности воздуха авиационные двигатели и пропеллеры менее эффективны. Это приводит к снижению скорости набора высоты и большему пробегу по земле для преодоления препятствий.

Рисунок 12-9.Взлетная дистанция увеличивается с увеличением высоты. [щелкните изображение, чтобы увеличить]

Высота над уровнем моря и человеческое тело

Как обсуждалось ранее, азот и другие газовые примеси составляют 79 процентов атмосферы, а оставшийся 21 процент - это кислород воздуха, поддерживающий жизнь. На уровне моря атмосферное давление достаточно велико, чтобы поддерживать нормальный рост, активность и жизнь. На высоте 18000 футов парциальное давление кислорода снижается и отрицательно влияет на нормальную деятельность и функции человеческого тела.

Реакция обычного человека ухудшается на высоте около 10 000 футов, но у некоторых людей ухудшение может возникнуть на высоте даже 5 000 футов. Физиологические реакции на гипоксию или кислородное голодание коварны и влияют на людей по-разному. Эти симптомы варьируются от легкой дезориентации до полной потери трудоспособности, в зависимости от переносимости тела и высоты. Дополнительный кислород или системы повышения давления в кабине помогают пилотам летать на больших высотах и ​​преодолевать последствия кислородного голодания.

Рекомендует летная грамотность

.

Зависимость атмосферного давления от высоты над уровнем моря

Давление воздуха над уровнем моря можно рассчитать как

p = 101325 (1 - 2,25577 10 -5 ч) 5.25588 (1)

где

101325 = нормальная температура и давление на уровне моря (Па)

p = давление воздуха (Па)

h = высота над уровнем моря (м)

Пример - Давление воздуха на высоте 10000 м

Давление воздуха на высоте 10000 м можно рассчитать как

p = 101325 (1-2.25577 10 -5 (10000 м)) 5.25588

= 26436 Па

= 26,4 кПа

В таблице ниже указано давление воздуха на высоте ниже и выше уровня моря.

Высота над уровнем моря Абсолютный барометр Абсолютное атмосферное давление
футов метр дюймов рт. Ст. мм рт. Ст. psia кг / см 2 кПа
-5000 -1524 35.7 908 17,5 1,23 121
-4500
прибл. самая глубокая точка под уровнем моря Согне-фьорд, Норвегия
-1372 35,1 892 17,2 1,21 119
-4000 -1219 34,5 876 16,9 1,19 117
-3500 -1067 33.9 861 16,6 1,17 115
-3000 -914 33,3 846 16,4 1,15 113
-2500 -762 32,7 831 16,1 1,13 111
-2000 -610 32,1 816 15,8 1,11 109
-1500
берег Мертвого моря , Палестина, Израиль и Иордания (-1371 фут)
-457 31.6 802 15,5 1,09 107
-1000 -305 31,0 788 15,2 1,07 105
-500 -152 30,5 774 15,0 1,05 103
0 1) 0 29,9 760 14,7 1.03 101
500
прибл. Мёллехой, Дания
152 29,4 746 14,4 1,01 99,5
1000 305 28,9 733 14,2 0,997 97,7
457 28,3 720 13,9 0,979 96,0
2000 610 27.8 707 13,7 0,961 94,2
2500 762 27,3 694 13,4 0,943 92,5
3000 914 26,8 3000 914 26,8 13,2 0,926 90,8
3500 1067 26,3 669 12,9 0,909 89.1
4000 1219 25,8 656 12,7 0,893 87,5
4500
прибл. Бен Невис, Шотландия, Великобритания
1372 25,4 644 12,5 0,876 85,9
5000 1524 24,9 632 12,2 0,860 84,3
6000 1829 24.0 609 11,8 0,828 81,2
7000 2134 23,1 586 11,3 0,797 78,2
8000 2438 22,295 10,9 0,768 75,3
9000 2743 21,4 543 10,5 0,739 72.4
10000 3048 20,6 523 10,1 0,711 69,7
15000 4572 16,9 429 8,29 0,583 57,295
20000
ок. Маунт МакКинли, Аляска, США
6096 13,8 349 6,75 0,475 46,6
25000 7620 11.1 282 5,45 0,384 37,6
30000
прибл. Гора Эверест, Непал - Тибет
9144 8,89 226 4,36 0,307 30,1
35000 10668 7,04 179 3,46 0,243 23 900 40000 12192 5,52 140 2.71 0,191 18,7
45000 13716 4,28 109 2,10 0,148 14,5
50000 15240 3,27 83 1,61 0,1 11,1

1) Уровень моря

.

РЕШЕНИЕ: Мы отметили, что атмосферное давление де…

Задача 117 Тяжелая сложность

Мы отметили, что атмосферное давление зависит от высоты. Атмосферное давление в зависимости от высоты
может быть рассчитано с помощью уравнения, известного как барометрическая формула:
$$ P = P_ {0} \ times 10 ^ {- M gh / 2303 RT} $$
В этом уравнении $ P $ и $ P_ {0} $ могут быть в любых единицах давления, например, торр.{\ circ} \ mathrm {C} \ right) $
(б) показывает, что атмосферное давление уменьшается на одну тридцатую по величине на каждые 900 футов увеличения высоты.

.

Атмосферное давление: определение и факты

В книгах по метеорологии атмосфера Земли часто описывается как огромный воздушный океан, в котором мы все живем. На диаграммах наша родная планета изображена как окруженная огромным атмосферным морем высотой в несколько сотен миль, разделенным на несколько различных слоев. И все же та часть нашей атмосферы, которая поддерживает всю жизнь, о которой мы знаем, на самом деле чрезвычайно тонкая и простирается вверх только до 18000 футов - чуть более 3 миль. И та часть нашей атмосферы, которую можно измерить с некоторой степенью точности, достигает примерно 25 миль (40 километров).Кроме того, дать точный ответ относительно того, где в конечном итоге заканчивается атмосфера, практически невозможно; где-то между 200 и 300 милями появляется неопределенная область, где воздух постепенно разрежается и в конечном итоге растворяется в космическом вакууме.

Так что слой воздуха, окружающий нашу атмосферу, в конце концов не такой уж и большой. Как красноречиво выразился покойный Эрик Слоан, популярный специалист в области погоды: «Земля не висит в воздушном море - она ​​висит в космическом море, и на ее поверхности есть чрезвычайно тонкий слой газа.

И этот газ - наша атмосфера.

Воздух имеет вес

Если человек поднимется на высокую гору, например Мауна-Кеа на Большом острове Гавайи, где вершина достигает 13 796 футов (4206 метров), высока вероятность заражения высотной болезнью (гипоксией). Перед восхождением на вершину посетители должны остановиться в Информационном центре, расположенном на высоте 9 200 футов (2 804 м), где им говорят акклиматизироваться к высоте, прежде чем идти дальше на гору.«Ну, конечно, - скажете вы, - в конце концов, количество доступного кислорода на такой большой высоте значительно меньше по сравнению с тем, что присутствует на уровне моря».

Но, делая такое заявление, вы ошиблись бы !

Фактически, 21 процент атмосферы Земли состоит из живительного кислорода (78 процентов состоит из азота, а оставшийся 1 процент - из ряда других газов). И доля этого 21 процента практически одинакова как на уровне моря, так и на высокогорье.

Большая разница не в количестве присутствующего кислорода, а скорее в плотности и давлении .

Эта часто используемая аналогия сравнения воздуха с водой («океан воздуха») хороша, поскольку все мы буквально плывем по воздуху. А теперь представьте себе это: высокое пластиковое ведро до краев заполнено водой. Теперь возьмите ледоруб и проделайте отверстие в верхней части ведра. Вода будет медленно стекать. Теперь возьмите кирку и проделайте еще одну дырку в нижней части ведра.Что просходит? Там внизу вода будет стремительно брызгать резким потоком. Причина - разница в давлении. Давление, которое оказывает вес воды внизу у дна ведра, больше, чем у вершины, поэтому вода «выжимается» из отверстия внизу.

Точно так же давление всего воздуха над нашими головами - это сила, которая выталкивает воздух в наши легкие и выжимает из него кислород в кровоток. Как только это давление падает (например, когда мы поднимаемся на высокую гору), в легкие поступает меньше воздуха, следовательно, меньше кислорода достигает нашего кровотока, что приводит к гипоксии; опять же, не из-за уменьшения количества доступного кислорода, а из-за уменьшения атмосферного давления.

Максимумы и минимумы

Итак, как атмосферное давление соотносится с суточными погодными условиями? Несомненно, вы видели прогнозы погоды, представленные по телевидению; встроенный в камеру метеоролог, ссылающийся на системы высокого и низкого давления. Что это вообще такое?

Короче говоря, каждый день солнечное тепло меняется по всей Земле. Из-за неравномерного солнечного нагрева температура меняется по всему земному шару; воздух на экваторе намного теплее, чем на полюсах.Таким образом, теплый легкий воздух поднимается и распространяется к полюсам, а более холодный и тяжелый воздух опускается к экватору.

Но мы живем на планете, которая вращается, поэтому эта простая картина ветра искажена до такой степени, что воздух искажен вправо от своего направления движения в Северном полушарии и влево в Южном полушарии. Сегодня мы знаем этот эффект как силу Кориолиса, и как прямое следствие этого возникают сильные спирали ветра, которые мы знаем как системы высокого и низкого давления.

В Северном полушарии воздух в областях с низким давлением движется по спирали против часовой стрелки и внутрь - например, ураганы - это механизмы Кориолиса, циркулирующие воздух против часовой стрелки. Напротив, в системах высокого давления воздух движется по спирали по часовой стрелке и наружу от центра. В Южном полушарии направление спирали воздуха меняется на противоположное.

Итак, почему мы обычно связываем высокое давление с хорошей погодой, а низкое - с неустойчивой погодой?

Системы высокого давления - это «купола плотности», которые давят вниз, а системы низкого давления похожи на «атмосферные долины», где плотность воздуха меньше.Поскольку холодный воздух имеет меньшую способность удерживать водяной пар, чем теплый воздух, облака и осадки вызываются охлаждением воздуха.

Итак, при увеличении давления воздуха температура повышается; под этими куполами высокого давления воздух имеет тенденцию опускаться (так называемое «проседание») на более низкие уровни атмосферы, где температуры выше и могут удерживать больше водяного пара. Любые капли, которые могут привести к образованию облаков, будут испаряться. Конечным результатом обычно становится более чистая и сухая среда.

И наоборот, если мы уменьшаем давление воздуха, воздух имеет тенденцию подниматься на более высокие уровни атмосферы, где температуры ниже. По мере того, как способность удерживать водяной пар уменьшается, пар быстро конденсируется, и облака (которые состоят из бесчисленных миллиардов крошечных капель воды или, на очень больших высотах, кристаллов льда) будут развиваться, и в конечном итоге выпадут осадки. Конечно, мы не могли прогнозировать зоны высокого и низкого давления без использования какого-либо устройства для измерения атмосферного давления.

Введите барометр

Атмосферное давление - это сила, действующая на единицу площади под действием веса атмосферы. Чтобы измерить этот вес, метеорологи используют барометр. Именно Евангелиста Торричелли, итальянский физик и математик, доказал в 1643 году, что он может сопоставить атмосферу со столбом ртути. Он фактически измерил давление, переведя его непосредственно в вес. Прибор, сконструированный Торричелли, был самым первым барометром. Открытый конец стеклянной трубки помещают в открытую емкость с ртутью.Атмосферное давление заставляет ртуть подниматься по трубке. На уровне моря столб ртути поднимется (в среднем) на высоту 29,92 дюйма или 760 миллиметров.

Почему бы не использовать воду вместо ртути? Причина в том, что на уровне моря высота водяного столба составляет около 34 футов! С другой стороны, ртуть в 14 раз плотнее воды и является самым тяжелым веществом, которое остается жидким при обычных температурах. Это позволяет прибору иметь более удобный размер.

Как НЕ использовать барометр

Прямо сейчас у вас может висеть барометр на стене вашего дома или офиса, но, по всей вероятности, это не трубка с ртутью, а циферблат со стрелкой, указывающей на текущее барометрическое давление. чтение давления. Такой прибор называется барометром-анероидом, который состоит из частично откачанной металлической ячейки, которая расширяется и сжимается при изменении давления, и прикреплен к механизму сцепления, который приводит в движение индикатор (стрелка) по шкале, градуированной в единицах давления, либо в дюймах. или миллибар.

Обычно на шкале индикатора вы также видите такие слова, как «Солнечный», «Сухой», «Неустойчивый» и «Бурный». Предположительно, когда стрелка указывает на эти слова, это означает, что впереди ожидаемая погода. «Солнечный», например, обычно встречается в диапазоне высокого барометрического давления - 30,2 или 30,3 дюйма. «Бурный», с другой стороны, можно найти в диапазоне низкого барометрического давления - 29,2 или ниже, возможно, даже иногда ниже 29 дюймов.

Все это могло бы показаться логичным, но все это довольно упрощенно.Например, могут быть моменты, когда стрелка будет указывать на «Солнечно», а небо вместо этого будет полностью затянуто облаками. А в других случаях стрелка будет указывать на «бурно», но вы можете увидеть солнечный свет, смешанный с голубым небом и быстро движущимися пухлыми облаками.

Как правильно пользоваться барометром

Поэтому наряду с черной стрелкой индикатора стоит обратить внимание на другую стрелку (обычно золотую), которую можно вручную настроить на любую часть циферблата.Когда вы проверяете свой барометр, сначала слегка постучите по передней части барометра, чтобы устранить любое внутреннее трение, а затем совместите золотую стрелку с черной. Затем проверьте несколько часов спустя, чтобы увидеть, как черная стрелка изменилась относительно золотой. Давление растет или падает? Если он падает, происходит ли это быстро (возможно, падает на несколько десятых дюйма)? Если так, то, возможно, приближается шторм. Если шторм только что прошел и небо прояснилось, барометр все еще может показывать «бурную» погоду, но если бы вы установили золотую стрелку несколько часов назад, вы почти наверняка увидели бы, что давление сейчас быстро растет, что говорит о что - несмотря на признаки шторма - приближается ясная погода.

И ваш прогноз можно еще больше улучшить, объединив ваши записи об изменении атмосферного давления с изменением направления ветра. Как мы уже узнали, воздух циркулирует по часовой стрелке вокруг систем высокого давления и против часовой стрелки вокруг систем низкого давления. Поэтому, если вы видите тенденцию к повышению давления и северо-западному ветру, вы можете ожидать, что в целом наступит хорошая погода, в отличие от падающего барометра и восточного или северо-восточного ветра, которые в конечном итоге могут привести к облакам и осадкам.

.

Смотрите также