Давление над уровнем моря


Зависимость давления от высоты над уровнем моря

Сегодня разбираем еще один запрос пользователя — Атмосферное давление, в котором нас просят вычислить атмосферное давление. В виду отсутствия дополнительной информации в запросе, я предположил, что нужно рассчитывать атмосферное давление в зависимости от высоты над уровнем моря.

Зависимость давления газа от высоты определяется так называемой барометрической формулой
,
где
— разность высот, м
— молярная масса воздуха, 29 г/моль (в расчете используется 0.029 кг/моль)
— универсальная газовая постоянная, 8.31 Дж/(мольК)
— ускорение силы тяжести, 9.81 м/(с
с)
— температура воздуха (К)

Кстати, еще тема атмосферного давления развивается здесь Барометрическое нивелирование и здесь Зависимость температуры кипения воды от высоты над уровнем моря.

Ниже калькулятор — вводим давление на высоте уровня моря (можно оставить по умолчанию; 760 миллиметров ртутного столба — это нормальное атмосферное давление), температуру и высоту, получаем результат.

Зависимость давления от высоты над уровнем моря

Давление на уровне моря (мм.рт.ст.)

Температура воздуха (градусы Цельсия)

Высота над уровнем моря (метры)

Давление на заданной высоте (мм.рт.ст.)

 

content_copy Ссылка save Сохранить extension Виджет

Атмосферное давление - Atmospheric pressure

Статическое давление, создаваемое массой атмосферы

«Давление воздуха» перенаправляется сюда. Для давления воздуха в других системах см. Давление .

Атмосферное давление , также известное как барометрическое давление (после барометра ), - это давление в атмосфере Земли . Стандартная атмосфера (символ: атм) является единицей давления определяется как 101,325  Па (1,013.25  гПа ; 1,013.25  мбар ), что эквивалентно 760 мм ртутного столба , 29.9212 дюймов ртутного столба , или 14.696 фунтов на квадратный дюйм . Атм примерно эквивалентен среднему атмосферному давлению на уровне моря на Земле, то есть атмосферное давление Земли на уровне моря составляет примерно 1 атм.     

В большинстве случаев, атмосферное давление близко приближаются к гидростатическому давлению , вызванным весомы в воздухе над измерительной точкой. По мере увеличения высоты над уровнем моря уменьшается масса вышележащей атмосферы, поэтому атмосферное давление уменьшается с увеличением высоты. Давление мера сила на единицу площади, с единицами СИ в паскалях (1 паскаль = 1 ньютон на квадратный метр , 1  Н / м 2 ). В среднем столб воздуха с площадью поперечного сечения в 1 квадратный сантиметр (см 2 ), измеренный от среднего (среднего) уровня моря до верхней границы атмосферы Земли, имеет массу около 1,03 килограмма и оказывает силу или " вес »около 10,1 ньютона , что дает давление 10,1 Н / см 2 или 101 кН / м 2 (101 килопаскаль, кПа). Колонна воздуха с площадью поперечного сечения 1 в 2 будет иметь вес около 14,7 фунтов F , в результате чего давление 14,7 фунтов е / в 2 .     

Механизм

Атмосферное давление вызывается гравитационным притяжением планеты к атмосферным газам над поверхностью и является функцией массы планеты, радиуса поверхности, количества и состава газов и их вертикального распределения в пространстве. Атмосфера. Он изменяется из-за вращения планет и местных эффектов, таких как скорость ветра, изменения плотности из-за температуры и изменения состава.

Среднее давление на уровне моря

Карта, показывающая атмосферное давление в мбар или гПа Среднее за 15 лет давление на уровне моря для июня, июля и августа (вверху) и декабря, января и февраля (внизу). Повторный анализ ERA-15 . Барометрический авиационный альтиметр типа Коллсмана (используемый в Северной Америке), показывающий высоту 80 футов (24 м), откалиброванный для давления на уровне моря 29,87 дюйма ртутного столба.

Среднее давление на уровне моря (MSLP) является атмосферным давлением на среднем уровне моря (PMSL). Это атмосферное давление, которое обычно указывается в сводках погоды по радио, телевидению, в газетах или в Интернете . Когда барометры в доме настроены на соответствие местным сводкам погоды, они измеряют давление с учетом уровня моря, а не фактическое местное атмосферное давление.

Настройка высотомера в авиации - это регулировка атмосферного давления.

Среднее давление на уровне моря составляет 1013,25 мбар (101,325 кПа; 29,921 дюйм рт. Ст.; 760,00 мм рт. Ст.). В авиационных сводках погоды ( METAR ) QNH передается по всему миру в миллибарах или гектопаскалях (1 гектопаскаль = 1 миллибар), за исключением США , Канады и Колумбии, где он передается в дюймах ртутного столба (с точностью до двух знаков после запятой). ). Соединенные Штаты и Канада также сообщают SLP давления на уровне моря , которое скорректировано с учетом уровня моря другим методом, в разделе примечаний, а не в международной части кода, в гектопаскалях или миллибарах. Однако в государственных сводках погоды в Канаде давление на уровне моря вместо этого указывается в килопаскалях.

В примечаниях к метеорологическим кодам США передаются только три цифры; десятичные точки и одна или две старшие цифры опускаются: 1013,2 мбар (101,32 кПа) передается как 132; 1000,0 мбар (100,00 кПа) передается как 000; 998,7  мбар передается как 987; и т. д. Самое высокое давление на уровне моря на Земле наблюдается в Сибири , где Сибирский антициклон часто достигает давления на уровне моря выше 1050 мбар (105 кПа; 31 дюйм рт. ст.) с рекордными максимумами, близкими к 1085 мбар (108,5 кПа; 32,0 дюйма рт. ст.) . Самое низкое измеряемое давление на уровне моря наблюдается в центрах тропических циклонов и торнадо с рекордно низким значением 870 мбар (87 кПа; 26 дюймов рт. Ст.).

Поверхностное давление

Давление атмосферное давление в месте на земной поверхности «(ы местности и океанов ). Это прямо пропорционально массе воздуха над этим местом.

По численным причинам атмосферные модели, такие как модели общей циркуляции (МОЦ), обычно предсказывают безразмерный логарифм приземного давления .

Среднее значение приземного давления на Земле 985 гПа. Это контрастирует со средним давлением на уровне моря, которое включает экстраполяцию давления на уровень моря для мест выше или ниже уровня моря. Среднее давление на среднем уровне моря ( MSL ) в Международной стандартной атмосфере ( ISA ) составляет 1013,25 гПа, или 1 атмосферу (атм), или 29,92 дюйма ртутного столба.

Давление (p), масса (м) и ускорение свободного падения (g) связаны соотношением P = F / A = (m * g) / A, где A - площадь поверхности. Таким образом, атмосферное давление пропорционально весу на единицу площади атмосферной массы над этим местом.

Изменение высоты

Изменение атмосферного давления с высотой, рассчитанное для 15 ° C и относительной влажности 0%. Эта пластиковая бутылка была запечатана на высоте примерно 14000 футов (4300 м) и была раздавлена ​​увеличением атмосферного давления, зафиксированным на высоте 9000 футов (2700 м) и 1000 футов (300 м), когда она была опущена к уровню моря.

Давление на Земле зависит от высоты поверхности; поэтому давление воздуха в горах обычно ниже, чем давление на уровне моря. Давление плавно меняется от поверхности Земли до верха мезосферы . Хотя давление меняется в зависимости от погоды, НАСА усреднило условия для всех частей Земли круглый год. С увеличением высоты атмосферное давление падает. Можно рассчитать атмосферное давление на заданной высоте. Температура и влажность также влияют на атмосферное давление, и необходимо знать их, чтобы рассчитать точное значение. График справанад был разработан для температуры 15 ° C и относительной влажности 0%.

На малых высотах над уровнем моря давление снижается примерно на 1,2 кПа (12 гПа) на каждые 100 метров. Для больших высот в тропосфере следующее уравнение ( барометрическая формула ) связывает атмосферное давление p с высотой h : пзнак равноп0⋅(1-L⋅часТ0)грамм⋅Mр0⋅Lзнак равноп0⋅(1-грамм⋅часcп⋅Т0)cп⋅Mр0≈п0⋅exp⁡(-грамм⋅час⋅MТ0⋅р0){\ displaystyle {\ begin {align} p & = p_ {0} \ cdot \ left (1 - {\ frac {L \ cdot h} {T_ {0}}} \ right) ^ {\ frac {g \ cdot M } {R_ {0} \ cdot L}} \\ & = p_ {0} \ cdot \ left (1 - {\ frac {g \ cdot h} {c _ {\ text {p}} \ cdot T_ {0}) }} \ right) ^ {\ frac {c _ {\ text {p}} \ cdot M} {R_ {0}}} \ приблизительно p_ {0} \ cdot \ exp \ left (- {\ frac {g \ cdot h \ cdot M} {T_ {0} \ cdot R_ {0}}} \ right) \ end {align}}}

где постоянные параметры описаны ниже:

Параметр Описание Значение
p 0 Стандартное атмосферное давление на уровне моря 101325  Па
L Температурный градиент температуры, = г / с р для сухого воздуха ~ 0,00976  К / м
c p Удельная теплоемкость при постоянном давлении 1004,68506  Дж / (кг · К)
Т 0 Стандартная температура на уровне моря 288,16  К
грамм Ускорение силы тяжести на поверхности земли 9.80665  м / с 2
M Молярная масса сухого воздуха 0,02896968  кг / моль
R 0 Универсальная газовая постоянная 8,314462618  Дж / (моль · К)

Местная вариация

Атмосферное давление на Земле сильно различается, и эти изменения важны для изучения погоды и климата . См. Систему давления, чтобы узнать о влиянии колебаний давления воздуха на погоду.

Атмосферное давление показывает суточный или полусуточный (дважды в день) цикл, вызванный глобальными атмосферными приливами . Этот эффект наиболее силен в тропических зонах с амплитудой в несколько миллибар и почти нулевой в полярных областях. Эти вариации имеют два наложенных друг на друга цикла: циркадный (24 ч) цикл и полусиркадный (12 ч) цикл.

Записи

Самое высокое барометрическое давление, приведенное к уровню моря, когда-либо зарегистрированное на Земле (выше 750 метров), составило 1084,8 гПа (32,03 дюйма ртутного столба), измеренное в Тосонценгеле, Монголия, 19 декабря 2001 года. 750 метров) было в Агате в Эвенкийском автономном округе , Россия (66 ° 53 '  с.ш., 93 ° 28'  в.д., высота: 261 м, 856 футов) 31 декабря 1968 г. при 1083,8 гПа (32,005 дюйма рт. Ст.). Дискриминация происходит из-за проблемных предположений (предполагая стандартную частоту отклонений), связанных с понижением уровня моря с большой высоты.

Мертвое море , самое низкое место на Земле в 430 м (1410 футов) ниже уровня моря, имеет соответственно высокое типичное атмосферное давление 1065  гПа. Рекорд приземного давления ниже уровня моря в 1081,8 гПа (31,95 дюйма ртутного столба) был установлен 21 февраля 1961 года.

Наименьшее без tornadic атмосферного давления когда - либо измеренная 870 гПа (0,858 атм; 25,69 INhg), установленного на 12 октября 1979 года во время тайфуна Совет в западной части Тихого океана. Измерения основывались на инструментальных наблюдениях с самолета-разведчика.

Измерение на основе глубины воды

Одна атмосфера (101,325 кПа или 14,7 фунтов на квадратный дюйм) - это также давление, вызванное весом столба пресной воды примерно 10,3 м (33,8 фута). Таким образом, ныряльщик на глубине 10,3 м под водой испытывает давление около 2 атмосфер (1 атм воздуха плюс 1 атм воды). И наоборот, 10,3 м - это максимальная высота, на которую можно поднять воду с помощью всасывания при стандартных атмосферных условиях.

Низкое давление, такое как линии природного газа , иногда указывается в дюймах водяного столба , обычно записываемых как wc (водяной столб) или wg (дюймы водяного столба). Типичный газовый бытовой прибор в США рассчитан на максимальное давление 1/2 фунта на квадратный дюйм, что составляет примерно 14 вод. Ст. (3487 Па или 34,9 мбар). Подобные метрические единицы с большим разнообразием названий и обозначений на основе миллиметров , сантиметров или метров теперь используются реже.

Температура кипения воды

Чистая вода кипит при 100 ° C (212 ° F) при нормальном атмосферном давлении. Точка кипения - это температура, при которой давление пара равно атмосферному давлению вокруг воды. Из-за этого температура кипения воды ниже при более низком давлении и выше при более высоком давлении. Поэтому приготовление пищи на большой высоте требует корректировки рецептов или приготовления под давлением . Грубую оценку высоты можно получить, измерив температуру, при которой вода закипает; в середине 19 века этим методом воспользовались исследователи.

Измерение и карты

Важным применением знания о том, что атмосферное давление напрямую зависит от высоты, стало определение высоты холмов и гор благодаря наличию надежных устройств измерения давления. В 1774 году, Маскелин был подтвердив теорию тяготения Ньютона на и на Schiehallion горе в Шотландии, и ему нужно было точно измерить высоты по бокам горы. Уильям Рой , используя атмосферное давление, смог подтвердить определение роста Маскелайна с точностью до одного метра (3,28 фута). Этот метод стал и остается полезным для геодезических работ и составления карт.

Смотрите также

  • Атмосфера (единица)
  • Плотность атмосферы
  • Атмосфера Земли  - газовый слой, окружающий Землю: в основном азот, исключительно богатый кислородом, со следовыми количествами других молекул.
  • Барометрическая формула  - формула, используемая для моделирования того, как давление воздуха изменяется с высотой.
  • Баротравма  - травма, вызванная давлением - физическое повреждение тканей тела, вызванное разницей в давлении между воздушным пространством внутри или рядом с телом и окружающим газом или жидкостью.
  • Герметизация кабины
  • Кавитация  - образование заполненных паром пустот низкого давления в жидкости.
  • Воздействие большой высоты на человека  - научный феномен
  • Область высокого давления  - область, в которой атмосферное давление на поверхности планеты выше, чем в окружающей среде.
  • Международная стандартная атмосфера  - модель атмосферы, таблица типичных изменений основных термодинамических переменных атмосферы (давления, плотности, температуры и т. Д.) С высотой в средних широтах.
  • Зона низкого давления
  • Метеорология
  • NRLMSISE-00
  • Камера статического давления
  • Давление  - сила, непрерывно распределенная по площади.
  • Измерение давления
  • Субтропический хребет

Ссылки

внешние ссылки

Эксперименты

ГОСТ 15150-69 Атмосферное давление

Главная / Проектировщику / Справочная информация – ГОСТ СНИП ПБ / ГОСТ 15150-69 /Версия для печати

Таблица 1. Группы пониженного давления

Обозначение групп пониженного давления

Атмосферное давление

Высота над уровнем моря, тыс. м

нижнее значение

Среднее значение (по ГОСТ 4401)

кПа

мм рт ст.

кПа

мм рт. ст.

а

70,0

525

75,6

567

2,4

б

60,0

450

65,8

493

3,5

в

53,3

400

59,3

445

4,3

г

26,7

200

29,0

218

9,4

д

12,0

90

13,3

100

14,4

е

4,4

33

5,5

41

20,0

ж

2,0

15

2,2

16

26,0

з

6×10-1

5

6×10-1

5

34,0

и

1,3×10-1

1

1,3×10-1

1

45,8

к

1,3×10-2

10-1

1,3×10-2

10-1

63,6

л

1,3×10-4

10-3

1,3×10-4

10-3

91,7

м

1,3×10-7

10-6

1,3×10-7

10-6

200

н

1,3×10-10

10-9

1,3×10-10

10-9

Средний и дальний космос

о

1,3×10-11

10-12

1,3×10-13

10-12

п

1,3×10-14

10-13

1,3×10-14

10-13

Таблица 2. Зависимость рабочих значений атмосферного давления от высоты над уровнем моря

Атмосферное давление

Высота над уровнем моря, тыс. м

нижнее значение

среднее значение (по ГОСТ 4401)

кПа

мм рт. ст.

кПа

мм рт. ст.

86,6

650

89,9

674

1,0

73,3

550

79,5

596

2,0

64,0

480

70,1

526

3,0

56,0

420

61,6

462

4,0

48,0

360

54,0

405

5,0

42,0

315

47,2

354

6,0

36,7

275

41,1

308

7,0

31,3

235

35,6

267

8,0

28,0

210

30,8

231

9,0

24,3

182

26,5

199

10,0

18,0

135

19,4

145

12,0

12,8

96

14,2

106

14,0

10,7

80

12,1

91

15,0

8,6

64

10,4

78

16,0

6,4

48

7,6

57

18,0

1,0

7,5

1,0

7,7

31,0

Таблица 3. Группы давления для шахт

Обозначение группы давления

Высота над уровнем моря, тыс. м

Давление воздуха

Рабочее значение

Предельное рабочее значение, нижнее

нижнее

среднее

верхнее

кПа

мм рт.ст.

кПа

мм рт.ст.

кПа

мм рт.ст.

кПа

мм рт.ст.

-

От 1,0

86,6

50

90

196

106

811

82

188

 

до 0

 

 

 

 

 

 

 

 

А

От 0

94

705

102

208

120

226

92

198

 

до - 1,0

 

 

 

 

 

 

 

 

Б

От - 1,0

106

811

114

220

135

241

104

210

 

до -2,0

 

 

 

 

 

 

 

 

В

От - 2,0

119

225

126

232

147

253

117,5

233,5

 

до - 3,0

 

 

 

 

 

 

 

 

<< назад / к содержанию ГОСТа 15150-69 / вперед >>

Атмосферное давление. Урок 13

Земля путём силы гравитации притягивает к себе молекулы воздуха. Они имеют вес, а значит создают давление как внутри самой атмосферы, так и на её границе с различными телами на земной поверхности. Атмосферное давление – это сила, с которой воздух давит на земную поверхность и на все находящиеся на ней предметы.

Атмосферное давление изменяется с высотой и зависит от погодных условий: температуры воздуха и перемещения воздушных масс в вертикальном направлении (конвекции). Вблизи земной поверхности оно приблизительно равно 105 Па (в интернациональной системе (СИ) давление измеряется в Паскалях – русское Па, международное – Pa).

За нормальное атмосферное давление принято давление ртутного столба высотой 76 см сечением в 1 см2 на уровне моря на широте 45° при температуре 0°С. Оно равно 760 мм рт. ст.(101325 Па, но реально берётся 100 000 Па) – это 1 атмосфера (атм.).


<!— Реклама —>

Атмосферное давление по-традиции измеряют в миллиметрах ртутного столба, современные аналоги этой меры – миллибары и гектопаскали. Один Паскаль – это давление силой в 1 Ньютон (Н), приходящееся на площадь 1 м2.

Интересно, что среднее давление атмосферы на поверхности Марса в 160 раз меньше, чем у поверхности Земли.

Как заметить атмосферное давление?

Хотя молекулы газа не имеют запаха и цвета, они постоянно взаимодействуют с рецепторами нашей кожи, сдавливают со всех сторон все предметы, заполняют пустоты, а их быстрое перемещение в горизонтальном направлении, называемое ветром, может сбить нас с ног. Доказать, что атмосферное давление существует, можно при помощи простых опытов.

Опыт 1 – «Непроливайка»

В стакан налить воды до краёв. Прикрыть его листком плотной бумаги и, придерживая бумагу ладонью, быстро перевернуть стакан кверху дном. Убрать ладонь. Вода из стакана не выльется, так как на бумагу снизу давит атмосфера.

Объяснение: фраза «на нас давит столб атмосферного воздуха», иногда употребляемая, в том числе и в школьных учебниках, некорректна. Она произносится по ассоциации с силой давления, действующей со стороны твёрдого тела. Эта сила действует на тела, расположенные ниже, и не действует на тела сбоку или, тем более, сверху данного тела. Иное дело давление жидкости или газа.

По закону Паскаля давление передаётся не только в точки на дне сосуда, но также и в точки на стенках и крышке. Силы гидростатического и атмосферного давлений действуют перпендикулярно произвольно ориентированной поверхности тела, контактирующей со средой, и могут иметь любое направление.

Воздух, давящий на бумагу снизу наполненного стакана – это доказательство несостоятельности такой ассоциации. Интересно, что если стакан наполнить водой только наполовину, то оставшийся воздух будет давить с такой же силой, как и наружный, и бумага не удержит воду (и воздух) в стакане.

Опыт 2 – «Сухим из воды»

Положить на плоскую тарелку монету или металлическую пуговицу и налить воды. Монета окажется под водой. Наша задача – выловить монету голыми руками, не замочив их.

Зажгите внутри сухого стакана бумагу и, когда воздух нагреется, опрокиньте стакан на тарелку рядом с монетой так, чтобы монета не очутилась под стаканом. Ждать придётся недолго. Бумага в стакане сразу погаснет, и воздух начнёт остывать. По мере его остывания вода будет втягиваться стаканом и вскоре вся соберётся там, обнажив дно тарелки.

Объяснение: когда воздух в стакане нагрелся, он расширился, как и все нагретые тела, избыток его нового объёма вышел из стакана. Когда же оставшийся воздух начал остывать, его стало недостаточно, чтобы в холодном состоянии оказывать прежнее давление, уравновешивать наружное давление атмосферы. Теперь вода под стаканом испытывает на каждый сантиметр своей поверхности меньшее давление, чем в открытой части тарелки. Неудивительно, что она вгоняется под стакан, втискиваемая туда избытком давления наружного воздуха. Вода вдавливается воздухом!

По этой же теме посмотрите эксперимент программы «Галилео».

Почему мы не чувствуем атмосферное давление?

Зная, что 1 м3 воздуха при температуре 0° на уровне моря весит 1,3 кг, легко подсчитать, что на крышу дома, имеющую площадь, например 100 м², атмосфера давит с силой 107 Н, что соответствует весу тела массой 1000 т. Однако крыша дома не проваливается.

Площадь спины лежащего на пляже человека заведомо больше 0,2 м2; следовательно, атмосфера давит на спину человека с силой, большей чем 20 000 Н, что соответствует камешку массой 2 т. Однако человек вообще не ощущает никакого давления сверху.

Опыт «Сухим из воды» демонстрирует нам ещё и доказательство внутреннего давления, уравновешивающего наружное давление атмосферы.

Мы не чувствуем давления воздуха, потому что давление атмосферы равномерно распределяется со всех сторон и потому что внутри нас есть такое же давление воздуха и жидкости, а адаптационные способности организма постоянно уравновешивают внутреннее давление, подстраивая его под изменение атмосферного. Но адаптации проходят только в небольшом интервале. 

Если люди живут длительное время на большой высоте, то их организм приспосабливается как к меньшему количеству кислорода, так и к более низкому давлению. Самые высокогорные поселения мира:

  • Ла-Ринконада (Перу) – 5100 м;
  • Эль-Альто (Боливия) – 4150 м;
  • Потоси (Боливия) – 4090 м;
  • Лхаса (Т ибет) – 3650 м;
  • Намче-базар (Непал) – 3450 м;
  • в России это Куруш (Дагестан) – 2600 м.
Посёлок золотоискателей Ла Ринконада-Ананея, 5100 м.
Автор: IJISCAY

А вот рыбы, живущие на глубине океана, привыкли к более высокому давлению, и быстро перестроиться их организм не способен. Их тело адаптировалось к нему, и внутреннее давление его намного выше 1 атм. Поэтому когда их достают из глубины, они взрываются из-за высокого внутреннего давления. То же произошло бы и с человеком в безвоздушном пространстве (в космосе).

Фильм по теме «Атмосферное давление и самочувствие человека».

Из истории открытия знаний о весе, давлении воздуха и изобретении барометра

О том, как измерить атмосферное давление, догадался итальянский математик и физик, выпускник иезуитского колледжа Э. Торричелли. Вместе с В. Вивиани – юным учеником Галилея – он провёл опыты по его измерению. Торричелли тоже был одним из последних учеников Галилея, и основываясь на его догадках доказал, что воздух имеет вес и оказывает давление.

Эванжелиста Торричелли и его барометр.
Автор: Saperaud~commonswiki

Торричелли впервые открыто выступил против догм Аристотеля. Рассуждая о насосе, он заявил, что

«прежде всего вода поднимается вслед за поршнем вовсе не потому, что «природа боится пустоты», просто воду гонит в насос давление, которое оказывает воздух на поверхность реки. В трубе же насоса, под поршнем, воздуха нет, поэтому вода входит в неё до тех пор, пока вес водяного столба в трубе насоса не уравновесит наружное давление воздуха».

Но доказал он это немного позже. Предложенный им опыт был осуществлён в 1643 г. В этом опыте использовалась запаянная с одного конца стеклянная трубка длиной около 1 м. Её наполняли ртутью и, закрыв пальцем (чтобы ртуть не выливалась раньше времени), перевернув, опускали в широкую чашку со ртутью.

Часть ртути из трубки выливалась, и в её верхней части образовывался вакуум (первая настоящая пустота, обнаруженная на Земле – Торричеллиева пустота). При этом высота столба ртути в трубке оказалась равной примерно 760 мм (если отсчитывать её от уровня ртути в чашке). Воздух давил на ртуть чашки и не давал вылиться из трубки.

Учёный также догадался, что давление атмосферы связано с изменением погоды. Наблюдая за высотой ртутного столба в трубке, Торричелли заметил, что атмосферное давление непостоянно и зависит от «теплоты или холода». Столбик в трубке то опускался, то поднимался, указывая на нужное деление шкалы. Вот почему в качестве одной из единиц давления взят миллиметр ртутного столба (мм рт. ст.). Тяжесть по-гречески «барос», и прибор Торричелли стали называть барометром.

Принцип действия барометра Торричелли

О давлении и весе воздуха почти одновременно с Торричелли догадался и другой известный учёный того времени – Декарт. Он объяснил, почему из продырявленного на дне флакона при закрытой крышке духи не вытекают, а при открытой вытекают, именно разностью в давлении воздуха на разные площади поверхности. Когда крышка флакона закрыта, поверхностное натяжение воды на небольшом отверстии способно удерживать жидкость во флаконе. При открытой крышке оно преодолевается силой давления воздуха и духи начинают вытекать. Декарт выдвинул гипотезу, что с высотой воздух становится реже, а значит, должно уменьшаться и его давление.

Уже после опытов Торричелли Декарт поручил талантливому французскому математику и физику Блезу Паскалю проверить его догадку – верно ли, что давление с высотой убывает. Для этого он должен был подняться в горы с трубкой Торричелли. Опустившийся вниз столбик ртути на высоте горы Пюи де Дом подтвердили гипотезы Торричелли и Декарта.

Паскаль сделал вывод:

«законы давления жидкостей, известные ещё со времён славного Архимеда и развитые голландцем Симеоном Стевином, во многом справедливы и для воздуха». 

Давление воздуха не замечается человеком, потому что по законам давления в жидкостях и газах оно направлено и в стороны, и вниз.

Как измеряют атмосферное давление?

Барометр Торричелли используют до сих пор. Этот простой прибор помогает определить примерную высоту над уровнем моря. Альпинисты берут его с собой высоко в горы. Барометр – обязательный прибор кабины каждого летательного аппарата, будь то самолёт или спутник Земли. В наши дни его «братья» спускаются и на дно морей. Из высотомеров они превратились в глубиномеры.

За три с лишним века барометры изменились: стали автоматическими, самозаписывающими, научились управлять другими механизмами.

Ртутный барометр измеряет атмосферное давление с наибольшей точностью

Старые ртутные барометры.
Автор: GianniG46

На метеорологических станциях давление атмосферного воздуха измеряют всё те же ртутные барометры, так как они обладают наибольшей точностью. Они работают по тому же принципу, что и изобретение Торричелли.

При измерении величины давления вводят поправки на температуру, так как при повышении температур, ртуть и шкала барометра расширяются. На практике пользуются готовой таблицей поправок, которая сразу же даёт нужную величину.

Мембранные барометры

Для измерения атмосферного давления применяют также мембранные манометры. Простейший мембранный манометр показан схематически на рис 1.

Рис. 1. Мембранный барометр

Тонкая упругая пластинка-мембрана 1 герметически закрывает коробку 2, из которой откачана часть воздуха. С мембраной соединён указатель 3, поворачивающийся около О на угол, зависящий от степени прогиба мембраны, которая в свою очередь зависит от разности измеряемой силы давления воздуха вне коробки и внутри коробки.

Такие манометры называют барометрами-анероидами. Их градуируют и выверяют по ртутному барометру. Они менее точны, зато более удобны в обращении, поскольку не содержат ртути. При определении давления анероидом вносятся три поправки (на шкалу, на температуру и дополнительная на прибор), указанные в сертификате прибора. Анероид может давать надежные показания только в том случае, если он время от времени подвергается тщательной проверке.

Барометр-анероид.
Изображение Wolfgang Eckert с сайта Pixabay

Анероид может быть градуирован непосредственно на высоту атмосферы. Такие анероиды называют альтиметрами; или высотомерами, они используются в авиалайнерах и позволяют пилоту контролировать высоту полёта.

Высотомер Булова Б-11, с самолёта-истребителя.
Автор: Дозиметр

Для непрерывной регистрации изменения атмосферного давления применяется самопишущий прибор — барограф . Приёмной частью барографа является несколько соединённых между собой малых анероидных коробок.

Другие приборы

Гипсотермометр (гипсометртермобарометрбаротермометр) — прибор для измерения атмосферного давления по температуре кипящей жидкости (обычно воды). Он более точен, чем анероид.

Состоит из кипятильника и термометра со шкалой, разделённой на 0°,01. Этот прибор обычно применяется в экспедиционных условиях для барометрического нивелирования.

Штормгласс – это химический или кристаллический барометр, состоящий из стеклянной колбы или ампулы, заполненных спиртовым раствором, в котором в определённых пропорциях растворены камфора, нашатырь и калийная селитра.
<!— Реклама —>

Этим химическим барометром активно пользовался во время своих морских путешествий английский гидрограф и метеоролог, вице-адмирал Роберт Фицрой, который тщательно описал поведение барометра, это описание используется до сих пор. Поэтому штормгласс также называют «Барометром Фицроя». В 1831–1836 гг. Фицрой возглавлял океанографическую экспедицию на корабле «Бигль», в которой участвовал Чарльз Дарвин.

Весной и осенью резкое падение показателей барометра предвещает ветреную погоду. Летом, в сильную жару, оно предупреждает о грозе. Зимой, особенно после продолжительных морозов, быстрое падение ртутного столба говорит о предстоящей перемене направления ветра, сопровождающейся оттепелью и дождём. Напротив, повышение ртутного столба во время продолжительных морозов предвещает снегопад.

Закономерности в изменении атмосферного давления и способ использования этих знаний

Почти вся масса атмосферы Земли сосредоточена в слое высотой примерно до 50 км. По достижении высоты 50 км ускорение свободного падения уменьшается всего лишь на 1,5% по сравнению с ускорением на уровне моря; поэтому можно принять, что в пределах всего 50-километрового слоя атмосферы ускорение свободного падения остается равным g = 9,8 м/с2.

Представляя атмосферный воздух в виде сплошной среды, мы, конечно, не должны забывать, что в действительности это газ. Давление — статистическая величина, выражаемая через усреднённый по многим молекулам квадрат скорости их хаотического движения. Сила давления на любую реальную или мысленно выделенную площадку в газе обусловлена хаотической бомбардировкой этой площадки множеством молекул.

Давление понижается с высотой и повышается при спуске в глубокие шахты. Причина – в разрежении  воздуха (уменьшении плотности) с подъёмом и уплотнении со спуском, ведь он притягивается землёй и около неё сосредоточена основная его масса. В нижней тропосфере давление с высотой уменьшается примерно на 1 мм на каждые 10,5 м. Это позволяет с помощью барометра-высотомера определять высоту места.

Как изменяется атмосферное давление с высотой?

На самом деле эта закономерность соблюдается только до высоты  в 1 км. Расстояние в метрах, на которое надо подняться или опуститься, чтобы атмосферное давление изменилось на 1 мб, называется барической ступенью. Барическая ступень на высоте от 0 до 1 км составляет 10,5 м, от 1 до 2 км – 11,9 м, на высоте 2-3 км барическая ступень равна 13,5 км. Величина барической ступени зависит от температуры. В тёплом воздухе она больше. Более точно барометрическая формула описана тут: https://ru.wikipedia.org/wiki/

На практике же часто пользуются особыми таблицами, которые позволяют более или менее приблизительно получать данные о высотах. Но для решения задач, не требующих высокой точности, можно пользоваться и средним значением. Можно оценить давление по разности высот, высчитать высоту по разности давления.

Задача 1

Альпинисты поднимаются на гору, высота которой 5100 м. У подножия горы давление составляет 720 мм рт. ст. Какое давление будет на вершине?

Решение:

При подъёме на 10,5 м давление снижается на 1 мм рт. ст.

1) Узнаем, на сколько мм. рт. ст. снизится давление при подъёме на эту гору. 5100:10,5=486 (на 486 мм рт. ст.)

2) Узнаем, каким будет давление на вершине. 720-486=234 (мм рт. ст.)

Ответ: На вершине будет давление в 234 мм рт. ст.

Задача 2

Определите, на какой высоте летит самолёт, если за бортом давление 450 мм рт. ст., а у поверхности Земли 750 мм рт. ст.

1) Определяем разность в давлении. 750-450=300 мм рт. ст. – столько раз по 10,5 метров поднялся самолёт.

2) Узнаем, на сколько метров поднялся самолёт. 10,5  Х  300 = 3150 (м)

Ответ: самолёт на высоте 3150 м.

Задача 3

У подножия холма барометр показывает давление – 761 мм рт. ст., а на вершине – 761 мм рт. ст. Чему равна высота холма?

Задача решается по тому же принципу, что и предыдущая.

1) 761-750=11 (мм рт. ст.)

2) 11 Х 10,5 = 115,5 (м)

Ответ: высота холма равна 115,5 м.

Атмосферное давление постоянно изменяется

Плотность воздуха зависит от температуры, температура же и является главной причиной изменения давления воздуха. Давление тёплого воздуха меньше, чем холодного. Это объясняется тем, что при нагревании воздух, как и все предметы, расширяется, его объём увеличивается и он перетекает в верхние слои на место менее нагретого воздуха, что приводит к уменьшению давления около земной поверхности.

На климатических и синоптических картах точки с одинаковыми показателями давления, приведённые к уровню моря, соединяют изолиниями, называемыми изобарами. Изобары бывают замкнутыми и незамкнутыми. Система замкнутых изобар с пониженным давлением в центре (Н) называется барическим минимумом, или циклоном. Система замкнутых изобар с повышенным давлением в центре (В) называется барическим максимумом, или антициклоном. Незамкнутые системы изобар – барический гребень, ложбина и седловина.

Все барические области делят на две группы: постоянные и сезонные (сохраняют характерные особенности давлений в течение определенного периода года).

Пояса давления на Земле

Давление на Земле распределяется зонально. В обобщённом виде эту зональность представляют в виде поясов:

  • на экваторе расположен пояс низкого давления – экваториальная депрессия;
  • к югу и северу от экватора до 30-40° широты – пояс повышенного давления;
  • на 60-70° с. и ю. ш. – пояса пониженного давления;
  • приполярные районы – пониженное давление.
Пояса атмосферного давления на Земле

На самом деле реальная картина распределения давления на поверхности земли гораздо сложнее.

Постоянные барические области

Постоянным остаётся экваториальный пояс пониженного давления, только смещая ось вслед за Солнцем. В июле она перемещается в Северное полушарие на 15-20° с. ш., в декабре – в Южное, на 5° ю. ш. Зимой над океаном и над сушей возникает сплошной пояс повышенного давления. Летом повышенное давление сохраняется над океанами, а над сушей образуется термическая депрессия и понижение давления. Постоянны и барические максимумы Антарктиды и Гренландии.

Над незамерзающими океанами и тёплыми течениями умеренной зоны и зимой и летом ярко выражены барические минимумы:

  • Исландский;
  • Алеутский.
Сезонные барические области

30-40° широты

Только зимой тут действительно наблюдается пояс высокого давления. Летом над материком оно становится низким, а над океанами, прогревающимися медленно, давление остаётся высоким и даже повышается. Другими словами барические максимумы в течение всего года здесь сохраняются только над океанами:

  • Северо-Атлантический;
  • Северо-Тихоокеанский;
  • Южно-Атлантический;
  • Южно-тихоокеанский;
  • Южно-Индийский.

Умеренные и субполярные

В умеренных и субполярных широтах северного полушария, где чередуются океаны и материки, давление над сушей и водой различное, особенно зимой. Над сушей летом – минимум, а зимой – максимум. Летом же во всём поясе давление пониженное. Зимой над охлаждёнными материками давление высокое, здесь возникают сезонные барические максимумы:

  • Азиатский, с центром над Монголией;
  • Северо-Американский (Канадский).

Суточное колебание давления атмосферы

Наблюдается и суточное колебание давления. Ночью наблюдается один максимум, а днём – один минимум. Дважды за сутки, утром и вечером, оно повышается и столько же раз понижается, после полуночи и после полудня.

Изменение давления в течение суток связано с температурой воздуха и зависит от её изменений. Годовые изменения зависят от нагревания материков и океанов в летний период и их охлаждения в зимнее время. Летом область пониженного давления создается на суше, а область повышенного давления над океаном.

Минимальная величина атмосферного давления – 641,3 мм рт.ст или 854 мб  – была зарегистрирована над Тихим океаном в урагане «Ненси», а максимальная – 815,85 мм рт.ст. или 1087 мб – в Туруханске зимой. Максимальное давление в России зарегистрировано в Красноярском крае в 1968 г – 870 мм рт. ст.

Все барические системы оказывают большое влияние на воздушные течения, погоду и климат на значительных территориях. О вызываемых ими ветрах мы поговорим в следующий раз.

Тест для закрепления изученного материала

Источники:

  1. Томилин А. Н., Теребинская Н. В. Для чего ничего? Очерки. /Л., «Дет. лит.», 1975.
  2. Я. И. Перельман. Занимательные задачи и опыты. — М.: «Детская литература», 1972.
  3. Физическая география: Справ. пособие для подгот. отд. вузов/Г. В. Володина, И. В. Душина, С. Г. Любушкина и др.; Под ред. К. В. Пашканга — М.: Высш. шк., 1991.
  4. Тарасов Л. В. Атмосфера нашей планеты. — М.: ФИЗМАТЛИТ, 2012.
  5. Савцов Т. М. Общее землеведение: Учеб. пособие для студ. высш. пед. учеб. заведений — М.: Издательский центр «Академия», 2003
  6. Дронов В. П. Землеведение. 5-6 кл.: Учебник/В. П. Дронов, Л. Е. Савельева. 5-е изд., стереотип. — М.: Дрофа, 2015.
  7. География 5-6 классы: учеб. для общеобразоват. учреждений / А. И. Алексеев, Е. К. Липкина, В. В. Николина и др.; Под ред А. И. Алексеева. — М.: Просвещение, 2012.

Вам будет интересно

Конспект "Атмосферное давление" - УчительPRO

«Атмосферное давление»

Воздух, как и любое тело, имеет массу: 1 л воздуха на уровне моря имеет массу около 1,3 г. На каждый квадратный сантиметр земной поверхности атмосфера давит силой 1 кг. Это среднее давление воздуха над уровнем океана у широты 45° при температуре 0 °С отвечает весу ртутного столбика высотой 760 мм и сечением 1 см2 (или 1013 мб.). Это давление принимают за нормальное атмосферное давление.

Атмосферное давление – это сила, с которой атмосфера давит на все находящиеся в ней предметы и на земную поверхность. Давление определяется в каждой точке атмосферы массой вышележащего столба воздуха с основанием, равным единице. С увеличением высоты атмосферное давление уменьшается, т. к. чем выше расположена точка, тем меньше над ней высота воздушного столба. С поднятием вверх воздух разрежается и его давление уменьшается. В высоких горах давление значительно меньше, чем на уровне моря. Эту закономерность используют при определении абсолютной высоты местности по величине давления.

Барическая ступень – расстояние по вертикали, на котором атмосферное давление уменьшается на 1 мм рт. ст. В нижних слоях тропосферы до высоты 1 км давление уменьшается на 1 мм рт. ст. на каждые 10 м высоты. Чем выше, тем давление понижается медленнее. В горизонтальном направлении у земной поверхности давление изменяется неравномерно, в зависимости от времени.

Барический градиент – показатель, характеризующий изменение атмосферного давления над земной поверхностью на единицу расстояния и по горизонтали.

Величина давления, кроме высоты местности над уровнем моря, зависит также и от температуры воздуха.

Давление теплого воздуха меньше, чем холодного, т. к. вследствие нагревания он расширяется, а при охлаждении – сжимается. С изменением температуры воздуха изменяется его давление.

Поскольку изменение температуры воздуха на земном шаре зонально, зональность характерна и для распределения атмосферного давления на земной поверхности. Вдоль экватора протягивается пояс пониженного давления, на 30—40° широтах к северу и югу – пояса повышенного давления, на 60—70° широтах давление снова пониженное, а в полярных широтах – области повышенного давления. Распределение поясов повышенного и пониженного давления связано с особенностями нагревания и движения воздуха у поверхности Земли. В экваториальных широтах воздух в течение всего года хорошо нагревается, поднимается вверх и растекается в сторону тропических широт. Подходя к 30—40° широтам, воздух охлаждается и опускается вниз, создавая пояс повышенного давления. В полярных широтах холодный воздух создает области повышенного давления. Холодный воздух постоянно опускается вниз, а на его место приходит воздух из умеренных широт. Отток воздуха в полярные широты – причина того, что в умеренных широтах создается пояс пониженного давления.

Пояса давления существуют постоянно.

Они лишь несколько смещаются к северу или югу в зависимости от времени года («вслед за Солнцем»). Исключение составляет пояс пониженного давления Северного полушария. Он существует только летом. Причем над Азией формируется огромная область пониженного давления с центром в тропических широтах – Азиатский минимум. Его формирование объясняется тем, что над огромным массивом суши воздух сильно прогревается. Зимой же суша, которая занимает значительные площади в этих широтах, сильно выхолаживается, давление над ней увеличивается, и над материками формируются области повышенного давления – Азиатский (Сибирский) и Северо-Американский (Канадский) зимние максимумы атмосферного давления. Таким образом, зимой пояс пониженного давления в умеренных широтах Северного полушария «разрывается». Он сохраняется только над океанами в виде замкнутых областей пониженного давления – Алеутского и Исландского минимумов.

Влияние распределения суши и воды на закономерности изменения атмосферного давления выражается также в том, что в течение всего года барические максимумы существуют только над океанами: Азорский (Северо-Атлантический), Северо-Тихоокеанский, Южно-Атлантический, Южно-Тихоокеанский, Южно-Индийский.

Атмосферное давление непрерывно изменяется. Главная причина изменения давления – изменение температуры воздуха.

Давление атмосферы измеряется при помощи барометров. Барометр-анероид состоит из герметически замкнутой тонкостенной коробки, внутри которой воздух разрежен. При изменении давления стенки коробки вдавливаются или выпячиваются. Эти изменения передаются на стрелку, которая перемещается по шкале, градуированной в миллибарах или миллиметрах.

На картах распределение давления по Земле показывают изобарами. Чаще всего на картах указывают распределение изобар января и июля.

Распределение областей и поясов атмосферного давления существенно влияет на воздушные течения, погоду и климат.

 


Конспект урока «Атмосферное давление». Следующая тема:

Атмосферное давление - что это? Какое 👀 атмосферное давление считается низким, а какое высоким?

Все мы и окружающие нас вещи испытывают атмосферное давление, создаваемое невидимым и почти не ощущаемым нами воздухом. Впервые его успешно померил физик Торричелли в 1634 году.

На 1 см2 действует атмосфера весом около 1 кг. Человек не ощущает этого, так как газы, всегда имеющиеся в крови и находящиеся в полостях тела, уравновешивают внешнее воздействие.

Как давит воздух на Землю

Нормальным средним современная физика считает давление, когда столбик атмосферы над 1 см2 площади весит 1,033 кг. Показатели были получены на нулевом уровне моря при 0⁰С, на широте 45⁰. Эта масса поднимает ртуть в трубке барометра вверх на 760 мм. Иногда показатель фиксируют в других физических единицах – Паскалях.

Для измерения величины используют барометры:

  1. Ртутные.
  2. Металлические (анероиды).

Основная деталь ртутного – это запаянная стеклянная трубка, которая открытым концом опущена в емкость с ртутью. Земной воздух давит на серебристую жидкость, та поднимается по трубочке, рядом с которой помещают миллиметровую шкалу.

На сколько миллиметров поднялся столбик, таким и будет значение, показывающее, как сильно атмосфера давит на площадь 1 см2.

Ртутный барометр

Анероиды сделаны по другому принципу. По сути – это металлическая коробка, из которой откачали воздух. Атмосфера (она более плотная, чем содержимое коробки) давит на стенки, и они прогибаются. Через систему рычагов они соединяются со стрелкой, которая указывает на текущее значение.

Величина давления атмосферы колеблется вокруг нормальных значений и зависит от погоды. Минимум (641,3 мм рт.ст.) был зафиксирован внутри тайфуна «Нэнси», зародившегося в Тихом океане и обрушившегося на Японию в 1961 году.

Рекордно высоко поднялась ртуть в барометре (815,85 мм рт.ст.) однажды зимой в одном из городов Красноярского края в России. До этого рекордсменом считался Хубсубульский аймак в Монголии.

Почему оно не одинаковое

Атмосферное давление меняется и на это влияют:

  • высота точки над уровнем моря;
  • сезон;
  • время суток;
  • климатическая зона;
  • изменения температуры.

Чем выше, тем ниже

Чем выше точка над уровнем моря, тем все более разреженным становится воздух, тем ниже становится давление атмосферы. В нижних слоях воздушной оболочки земли давление убывает каждые 11 метров на 1 мм рт.ст.

Например, на высоте 20 км оно составляет лишь 47 мм рт.ст. Поэтому при подъеме на такое расстояние от поверхности Земли у человека закипает кровь и межтканевые жидкости. Если не находиться в герметической кабине самолета или аэростата, то смерть наступит почти мгновенно.

Известно, что в разных населенных пунктах планеты норма давления атмосферы своя. Это логично, так как находиться они могут на разной высоте. Так, например, Челябинск построен на возвышении — 226 м от нулевой отметки уровня мирового океана. Нормальное атмосферное давление для него — это 739 мм рт.ст.

Расположение Кургана по отношению к поверхности мирового океана – 72 м, и типичные показания барометра, которые можно считать нормальными – 753 мм рт. ст.

Перепады температуры

Какое время года на дворе – это тоже влияет на показатель. Зимой он выше, так как зимний воздух холоднее и плотнее. Летом – ниже, потому что воздух теплее и разреженнее.

Та же температурная причина изменений уровня ртутного столбика в течение суток. Суточные колебания происходят в пределах 4 – 5 мм, а сезонные — не превышают 30 мм рт. ст. Все те же физические явления объясняют то, что в Арктике и Антарктиде постоянно высокое атмосферное давление, а на экваторе – низкое.

Циклон, вид из космоса

Неравномерное прогревание воздуха — фактор, ответственный за формирование территорий с пониженным давлением, вокруг которых формируются циклоны. Снижение показаний барометра может указывать на возможность дождя.

Считается, что дождь, если ртуть ниже 760 мм. И если задуматься, какое атмосферное давление правомерно считать низким и, наоборот, высоким, то эта цифра и будет пограничным критерием.

Метеозависимые люди очень чувствительны к перепадам давления. Значение ниже 750 мм рт.ст. для многих из них связано с неприятными ощущениями.

Медики объясняют это тем, что при низких показаниях барометра давление газов внутри тела, в жидкостях и полостях, становится выше, чем снаружи. Это раздражает рецепторы в органах и человек может ощущать ломоту в суставах.

Кроме того, ощущается кислородное голодание, не редки случаи головокружений, сонливости, оглушенного состояния.

Давно вы имели по-настоящему КРУПНЫЙ УЛОВ?

Когда последний раз ловили десятки ЗДОРОВЕННЫХ щук/карпов/лещей?

Нам всегда хочется получать результат от рыбалки – поймать не три окунька, а десяток килограммовых щук – вот это будет улов! Каждый из нас мечтает о таком, но далеко не каждый умеет.

Хорошего улова можно достичь (и мы это с вами знаем) благодаря хорошей прикормке.

Ее можно приготовить в домашних условиях, можно купить в рыбацких магазинах. Но в магазинах дорого, а чтобы приготовить прикормку дома, нужно потратить уйму времени, да и, по праве говоря, далеко не всегда домашняя прикормка хорошо работает.

Вам знакомо то разочарование, когда вы купили прикормку или приготовили ее дома, а поймали три-четыре окунька?

Так может быть пора воспользоваться действительно рабочим продуктом, эффективность которого доказана как научно, так и практикой на реках и прудах России?

Fish Megabomb дает тот самый результат, который мы не можем достичь сами, тем более, стоит она дешево, что отличает от других средств и времени тратить на изготовление не нужно – заказал, привезли и вперед!

Конечно, лучше один раз попробовать, чем тысячу раз услышать. Тем более сейчас – самый сезон! Скидка в 50% при заказе это отличный бонус!

Узнайте подробнее про приманку!

Зависимость атмосферного давления от высоты над уровнем моря

Давление воздуха над уровнем моря можно рассчитать как

p = 101325 (1 - 2,25577 10 -5 ч) 5.25588 (1)

где

101325 = нормальная температура и давление на уровне моря (Па)

p = давление воздуха (Па)

h = высота над уровнем моря (м)

Пример - Давление воздуха на высоте 10000 м

Давление воздуха на высоте 10000 м можно рассчитать как

p = 101325 (1-2.25577 10 -5 (10000 м)) 5.25588

= 26436 Па

= 26,4 кПа

В таблице ниже указано давление воздуха на высоте ниже и выше уровня моря.

900
Высота над уровнем моря Абсолютный барометр Абсолютное атмосферное давление
футов метр дюймов рт. Ст. мм рт. Ст. psia кг / см 2 кПа
-5000 -1524 35.7 908 17,5 1,23 121
-4500
прибл. самая глубокая точка под уровнем моря Согне-фьорд, Норвегия
-1372 35,1 892 17,2 1,21 119
-4000 -1219 34,5 876 16,9 1,19 117
-3500 -1067 33.9 861 16,6 1,17 115
-3000 -914 33,3 846 16,4 1,15 113
-2500 -762 32,7 831 16,1 1,13 111
-2000 -610 32,1 816 15,8 1,11 109
-1500
берег Мертвого моря , Палестина, Израиль и Иордания (-1371 фут)
-457 31.6 802 15,5 1,09 107
-1000 -305 31,0 788 15,2 1,07 105
-500 -152 30,5 774 15,0 1,05 103
0 1) 0 29,9 760 14,7 1.03 101
500
прибл. Мёллехой, Дания
152 29,4 746 14,4 1,01 99,5
1000 305 28,9 733 14,2 0,997 97,7
457 28,3 720 13,9 0,979 96,0
2000 610 27.8 707 13,7 0,961 94,2
2500 762 27,3 694 13,4 0,943 92,5
3000 914 26,8 3000 914 26,8 13,2 0,926 90,8
3500 1067 26,3 669 12,9 0,909 89.1
4000 1219 25,8 656 12,7 0,893 87,5
4500
прибл. Бен-Невис, Шотландия, Великобритания
1372 25,4 644 12,5 0,876 85,9
5000 1524 24,9 632 12,2 0,860 84,3
6000 1829 24.0 609 11,8 0,828 81,2
7000 2134 23,1 586 11,3 0,797 78,2
8000 2438 22,295 10,9 0,768 75,3
9000 2743 21,4 543 10,5 0,739 72.4
10000 3048 20,6 523 10,1 0,711 69,7
15000 4572 16,9 429 8,29 0,583 57,295
20000
ок. Маунт МакКинли, Аляска, США
6096 13,8 349 6,75 0,475 46,6
25000 7620 11.1 282 5,45 0,384 37,6
30000
прибл. Гора Эверест, Непал - Тибет
9144 8,89 226 4,36 0,307 30,1
35000 10668 7,04 179 3,46 0,243
0,243
40000 12192 5,52 140 2.71 0,191 18,7
45000 13716 4,28 109 2,10 0,148 14,5
50000 15240 3,27 83 1,61 0,1 11,1

1) Уровень моря

.

METAR SLP - Давление на уровне моря

Многие аэропорты имеют запись SLPxxx в разделе примечаний своих сводок METAR. Что это такое? SLP означает «давление на уровне моря». В качестве примера рассмотрим METAR Бербанка:

.
 КБУР 151753Z 14007KT 9SM CLR 23/14 A2994 RMK AO2 SLP127 T02280144 10228 20167 50000 $ 

Мы видим A2994, который является нашим (в США) нормальным высотомером, установленным в «дюймах ртутного столба», что соответствует 29,94 дюйма ртутного столба.

SLP - это давление на уровне моря, показывающее десятки, единицы и десятые доли гектопаскалей (гПа, или миллибар).Вам остается определять, что такое тысячи и сотни. Это помогает знать, что стандартное давление на уровне моря составляет 1013,2 гПа; для практических целей 950-1049 - разумный диапазон для этого значения. [Самое высокое давление, когда-либо зарегистрированное, было 1085,7, а самое низкое - 870, так что это не совсем так; 870 был зарегистрирован в месте урагана и максимума зимой в Монголии, когда было очень холодно, то есть в ненормальных условиях]. Учитывая этот нормальный диапазон, легко определить, добавлять ли 9 или 10 в начало предоставленного значения.В нашем случае мы переводим SLP127 в 1012,7 гПа или мбар.

Теперь внимательный читатель заметит, что установка высотомера 29,94 немного выше стандарта 29,92, а 1012,7 немного ниже. В чем дело? Хотя оба значения предназначены для давления, которое можно ожидать на уровне моря, они рассчитываются по-разному и для разных целей.

Настройка высотомера - это «значение давления, на которое установлена ​​шкала высотомера самолета, чтобы она показывала высоту над средним уровнем моря самолета на земле в том месте, для которого это значение было определено.». Другими словами, он работает так же, как и в аэропорту, без каких-либо сообщений о погоде - выясните, какая настройка альтиметра дает вам правильную высоту. Наши высотомеры не корректируют нестандартную температуру, поэтому во многих случаях фактическое давление на уровне моря будет другим. Примеры, когда установка высотомера может дать вам ошибочные данные, которые могут стать проблемой, см. «How Hi Am I?»

Давление на уровне моря - это «значение давления, полученное теоретическим снижением барометрического давления до уровня моря.Если поверхность Земли находится над уровнем моря, предполагается, что атмосфера простирается до уровня моря ниже станции и что свойства этой гипотетической атмосферы связаны с условиями, наблюдаемыми на станции ». Более подробно, «давление на уровне моря должно вычисляться путем корректировки давления на станции для компенсации разницы между высотой станции и уровнем моря. Эта корректировка должна основываться на высоте станции и средней 12-часовой температуре на станции .Это значение может быть более точным для метеорологических целей и попыток исправить нестандартные температуры.

Подробнее о кодировании METAR и использовании значений давления в METARS.

.

Давление на уровне моря:

Давление на уровне моря

Справочная карта погоды

Текущая карта погоды

На этой панели показано давление на уровне моря в Соединенных Штатах. Эта диаграмма полезна для поиска регионов высокий и низкий напорные системы.

Сплошные белые контуры представляют контуры давления. (изобары) в миллибарах. Изобары имеют интервал 4 мбар.Скорость ветра прямо связано с расстоянием между изобарами. Чем ближе они вместе, тем сильнее градиент давления, и тем сильнее ветер. Низкий и системы высокого давления также могут быть размещены с карты выше. Системы низкого давления расположены в регионах самого низкого давления, а высокого давления системы расположены в областях наибольшего давления.

Для получения дополнительной информации о том, как давление влияет на погоду, перейдите на наш модуль сил и ветра.



Карты точки росы

давление и ветер
.

Давление

Давление в жидкости определяется как

"нормальная сила на единицу площади, действующая на воображаемую или реальную плоскую поверхность в жидкости или газе"

Уравнение для давления может быть выражено как :

p = F / A (1)

где

p = давление (фунт / дюйм 2 (psi), фунт / фут 2 (psf), Н / м 2 , кг / мс 2 (Па))

F = усилие (Н) 1)

A = площадь (в 2 , ft 2 , m 2 )

1) В британско-английской инженерной системе особое внимание следует уделять силовой единице.Базовая единица измерения массы - снаряд, а единица измерения силы - фунт ( фунтов, ) или фунт силы ( фунтов, фунтов, ).

Абсолютное давление

Абсолютное давление - p abs - измеряется относительно абсолютного давления нулевого давления - давления, которое возникает при абсолютном вакууме. Все расчеты, связанные с газовым законом, требуют, чтобы давление (и температура) выражались в абсолютных единицах.

Манометр

Манометр часто используется для измерения разницы давлений между системой и окружающей атмосферой. Это давление часто называется манометрическим давлением и может быть выражено как

p г = p с - p атм (2)

где

p g = избыточное давление (Па, фунт / кв. Дюйм)

p с = давление в системе (Па, фунт / кв. Дюйм)

p атм = атмосферное давление (Па, фунт / кв. Дюйм)

Атмосферное давление

Атмосферное давление - это давление в окружающем воздухе на поверхности земли или "близко" к ней.Атмосферное давление зависит от температуры и высоты над уровнем моря.

Стандартное атмосферное давление

Стандартное атмосферное давление ( атм, ) обычно используется в качестве справочного материала при перечислении плотностей и объемов газа. Стандартное атмосферное давление определяется на уровне моря при 273 o K (0 o C) и составляет 1,01325 бар или 101325 Па (абсолютное) . Иногда используется температура 293 o K (20 o C) .

В британских единицах стандартное атмосферное давление составляет 14,696 фунтов на квадратный дюйм.

  • 1 атм = 1,01325 бар = 101,3 кПа = 1,013 10 5 Па = 14,696 фунтов на кв. Дюйм ( фунт / дюйм / дюйм 2 ) = 760 мм рт. Ст. = 10,33 м вод. Ст. 2 O = 760 торр = 29,92 дюйма рт. Ст. = 1013 мбар = 1,0332 кг f / см 2 = 33,90 футов H 2 O

Единицы давления

Поскольку 1 Па - это малая единица измерения давления, широко используется единица измерения гектопаскаль (гПа), особенно в метеорологии.Единица килопаскаль (кПа) обычно используется при проектировании технических приложений, таких как системы отопления, вентиляции и кондиционирования, трубопроводные системы и т. Д.

  • 1 гектопаскаль = 100 Паскаль = 1 миллибар
  • 1 килопаскаль = 1000 Паскаль
Некоторые уровни давления
  • 10 Па - давление ниже 1 мм водяного столба - приблизительно давление, оказываемое массой 10 г на 1 см 2 площадь
  • 10 кПа - давление ниже 1 м водяного столба или падение давления воздуха при движении с уровня моря до 1000 высота м
  • 10 МПа - давление на сопле в шайбе «высокого давления»
  • 10 ГПа - давление, достаточное для образования алмазов
Некоторые альтернативные единицы давления
  • 1 бар - 100000 Па
  • 1 миллибар - 100 Па
  • 1 атмосфера - 101325 Па
  • 1 мм рт. Ст. - 133 Па
  • 1 дюйм рт. Ст. - 3386 Па

A торр (часто используется в вакуумных приложениях) назван в честь Торричелли и представляет собой давление, создаваемое столбом ртути высотой 1 мм - равно 1/760 th атмосферы.

  • 1 атм = 760 торр = 14,696 фунтов на квадратный дюйм

фунтов на квадратный дюйм (фунтов на квадратный дюйм) обычно использовался в Великобритании, но теперь почти во всех странах, кроме США, заменен на единицы СИ. Поскольку атмосферное давление составляет 14,696 фунтов на квадратный дюйм - столб воздуха на площади в один квадратный дюйм от поверхности Земли до космоса - весит 14,696 фунтов .

Штанга (бар) обычно используется в промышленности.Один бар составляет 100000 Па , и для большинства практических целей его можно приблизить к на одну атмосферу , даже если

1 бар = 0,9869 атм

Есть 1000 миллибар (мбар) в бар bar , стандартная единица измерения в метеорологии и погодных приложениях.

1 миллибар = 0,001 бар = 0,750 торр = 100 Па

Связанные мобильные приложения из Engineering ToolBox

- бесплатные приложения для автономного использования на мобильных устройствах.

.

ГЛАВА 2. АТМОСФЕРНОЕ ДАВЛЕНИЕ

Ответ. Тропосфера содержит всю массу атмосферы, за исключением части P (тропопауза) / P (поверхность), которая находится выше тропопаузы. Из Рисунок 2-2 мы читаем P (тропопауза) = 100 гПа, P (поверхность) = 1000 гПа. Таким образом, доля Ftrop от общей массы атмосферы в тропосфере составляет

. Тропосфера составляет 90% общей массы атмосферы на 30 ° с.ш. (85% в мире).

Доля Fstrat от общей массы атмосферы в стратосфере выражается долей над тропопаузой, P (тропопауза) / P (поверхность), минус доля над стратопаузой, P (стратопауза) / P (поверхность).Из Рисунок 2-2 мы читаем P (стратопауза) = 0,9 гПа, так что

Таким образом, стратосфера содержит почти всю массу атмосферы над тропосферой. Мезосфера содержит лишь около 0,1% общей массы атмосферы.

2,4 БАРОМЕТРИЧЕСКИЙ ЗАКОН

Мы рассмотрим факторы, управляющие вертикальным профилем атмосферной температуры в главах 4 и 7. Мы сосредоточимся здесь на объяснении вертикального профиля давления. Рассмотрим элементарный слой атмосферы (толщина dz, горизонтальная область A) на высоте z:

.

Рисунок 2-3 Вертикальные силы, действующие на элементарный слой атмосферы

Атмосфера оказывает восходящую силу давления P (z) A на нижнюю часть плиты и направленную вниз силу давления P (z + dz) A на верхнюю часть плиты; чистая сила, (P (z) -P (z + dz)) A, называется сила градиента давления.Поскольку P (z)> P (z + dz), сила градиента давления направлена ​​вверх. Чтобы плита находилась в равновесии, ее вес должен уравновешивать силу градиента давления:

(2.3)

Переставляем урожайность

(2,4)

Левая часть по определению равна dP / dz. Следовательно,

(2,5)

Теперь, исходя из закона идеального газа,

(2.6)

где Ma - молекулярная масса воздуха, T - температура. Подстановка (2,6) в (2,5) урожайность:

(2,7)

Сделаем упрощающее предположение, что T постоянна с высотой; как показано в Рисунок 2-2 , T изменяется только на 20% ниже 80 км. Затем мы интегрируем (2,7) чтобы получить

(2,8)

что эквивалентно

(2.9)

Уравнение (2,9) называется барометрический закон. Удобно определить шкала высоты H для атмосферы:

(2.10)

приводя к компактной форме Барометрического закона:

(2.11)

Для средней температуры атмосферы T = 250 K масштаб высоты H = 7,4 км. Барометрический закон объясняет наблюдаемую экспоненциальную зависимость P от z в Рисунок 2-2 ; из уравнения (2.11) , график зависимости z от ln P дает прямую линию с наклоном -H (проверьте, что наклон в Рисунок 2-2 действительно близко к -7,4 км). Небольшие колебания наклона Рисунок 2-2 вызваны колебаниями температуры с высотой, которые мы не учли в нашем выводе.

Аналогично можно сформулировать вертикальную зависимость плотности воздуха. Из (2,6) , ra и P связаны линейно, если T предполагается постоянным, так что

(2.12)

Аналогичное уравнение применяется к плотности воздуха na. Для каждого подъема высоты H давление и плотность воздуха падают в е = 2,7 раза; таким образом, H обеспечивает удобную меру толщины атмосферы.

При расчете высоты шкалы от (2.10) мы предположили, что воздух ведет себя как однородный газ с молекулярной массой Ma = 29 г / моль. Закон Дальтона гласит, что каждый компонент воздушной смеси должен вести себя так, как если бы он был один в атмосфере.Тогда можно было бы ожидать, что разные компоненты будут иметь разные шкала высоты определяется их молекулярной массой. В частности, учитывая разницу в молекулярной массе между N2 и O2, можно было ожидать, что соотношение смешивания O2 будет уменьшаться с высотой. Однако, гравитационное разделение воздушной смеси происходит за счет молекулярная диффузия, которая значительно медленнее, чем турбулентное вертикальное перемешивание воздуха на высотах ниже 100 км ( проблема 4. 9 ). Таким образом, турбулентное перемешивание поддерживает однородную нижнюю атмосферу.Только на высоте более 100 км начинает происходить значительное гравитационное разделение газов, причем более легкие газы обогащаются на больших высотах. Во время дебатов о вредном воздействии хлорфторуглеродов (ХФУ) на стратосферный озон некоторые не очень уважаемые ученые утверждали, что ХФУ не могут достичь стратосферы из-за их высокого молекулярного веса и, следовательно, низкого масштаба. В действительности турбулентное перемешивание воздуха гарантирует, что соотношения смешивания CFC в воздухе, поступающем в стратосферу, по существу такие же, как и в приземном воздухе.

.

определение sea-level_pressure и синонимы sea-level_pressure (английский)

Из Википедии, бесплатная энциклопедия

(перенаправлено с уровня моря)

«Давление воздуха» перенаправляется сюда. Для давления воздуха в других системах см. Давление.

Атмосферное давление определяется как сила на единицу площади, действующая на поверхность весом воздуха над этой поверхностью в любой заданной точке атмосферы Земли. В большинстве случаев атмосферное давление приблизительно соответствует гидростатическому давлению, вызванному весом воздуха над точкой измерения.Области низкого давления имеют меньшую массу атмосферы над их местоположением, тогда как области высокого давления имеют большую массу атмосферы над их местоположением. Аналогично, по мере увеличения высоты над уровнем моря уменьшается масса вышележащей атмосферы, поэтому давление уменьшается с увеличением высоты. Столб воздуха в поперечном сечении в один квадратный дюйм, измеренный от уровня моря до верхних слоев атмосферы, будет весить приблизительно 14,7 фунта-силы (65 Н). Вес столба воздуха размером 1 м 2 (11 квадратных футов) будет около 101 кгс (0.101 т ф ).

Стандартное атмосферное давление

Стандартная атмосфера (символ: атм) - это единица измерения давления, равная 101,325 Па или 101,325 кПа. [1] [2] Следующие единицы эквивалентны, но только количеству отображаемых десятичных знаков: 760 мм рт. Ст. (Торр), 29,92 дюйма рт. Ст., 14,696 фунт / кв. Дюйм, 1013,25 мбар. Одна стандартная атмосфера - это стандартное давление, используемое для пневмоэнергетики (ISO R554), а также в аэрокосмической (ISO 2533) и нефтяной (ISO 5024) отраслях.

В 1999 году Международный союз теоретической и прикладной химии (IUPAC) рекомендовал, чтобы для целей определения свойств веществ « стандартное давление » определялось точно как 100 кПа (≈750,01 торр) или 29,53 дюйма ртутного столба. вместо значения 101,325 кПа для «одной стандартной атмосферы». [3] Это значение используется как стандартное давление для компрессоров и пневматических инструментов (ISO 2787). [4] (См. Также Стандартные температура и давление.) В Соединенных Штатах расход сжатого воздуха часто измеряется в «стандартных кубических футах» в единицу времени, где «стандарт» означает эквивалентное количество влаги при стандартной температуре и давлении. На каждые 1000 футов вашего подъема атмосферное давление снижается на 4%. Однако эта стандартная атмосфера определяется несколько иначе: температура = 20 ° C (68 ° F), плотность воздуха = 1,225 кг / м³ (0,0765 фунта / куб. Фут), высота = уровень моря, а относительная влажность = 20%. В индустрии кондиционирования воздуха стандартом часто является температура = 0 ° C (32 ° F).Для природного газа в нефтяной промышленности используется стандартная температура 15,6 ° C (60,1 ° F), давление 101,56 кПа (14,730 фунт / кв. Дюйм). (атмосферное давление)

Среднее давление на уровне моря

Среднее давление на уровне моря за 15 лет для июня, июля и августа (вверху) и декабря, января и февраля (внизу).

Среднее давление на уровне моря (MSLP) - это давление на уровне моря или (при измерении на заданной высоте на суше) давление станции, приведенное к уровню моря, принимая изотермический слой при температуре станции.

Это давление, которое обычно указывается в сводках погоды по радио, телевидению, газетам или в Интернете. Когда барометры в доме настроены на соответствие местным сводкам погоды, они измеряют давление, приведенное к уровню моря, а не фактическое местное атмосферное давление. См. Альтиметр (барометр по сравнению с абсолютным).

Понижение до уровня моря означает, что нормальный диапазон колебаний давления одинаков для всех. Давления, которые считаются высоким давлением или низким давлением , не зависят от географического положения.Это делает изобары на карте погоды значимым и полезным инструментом.

Файл: Aircraft altimeter.JPG Барометрический авиационный альтиметр типа Коллсмана, используемый в Северной Америке, показывающий высоту 80 футов (24 м).

Настройка высотомера в авиации, устанавливаемая либо QNH, либо QFE, представляет собой еще одно атмосферное давление, пониженное до уровня моря, но метод этого уменьшения немного отличается.

QNH
Настройка барометрического высотомера, при которой высотомер будет считывать высоту аэродрома при нахождении на аэродроме.В условиях температуры ISA высотомер будет считывать высоту над уровнем моря в районе аэродрома
QFE
Барометрическая установки высотомера, который будет вызывать высотомер, чтобы прочитать ноль, когда в опорной точке конкретного аэродрома (обычно порог ВПП ). В температурных условиях ISA высотомер будет определять высоту над точкой отсчета в районе аэродрома.

QFE и QNH - это произвольные коды Q, а не сокращения, но для их различения пилотами часто используются мнемонические символы «Морская высота» (для QNH) и «Высота поля» (для QFE).

Среднее давление на уровне моря составляет 101,325 кПа (1013,25 мбар, или гПа) или 29,921 дюйма ртутного столба (дюймы ртутного столба) или 760 миллиметров (мм рт.ст.) . В сводках погоды в авиации (METAR) QNH передается по всему миру в миллибарах или гектопаскалях (1 миллибар = 1 гектопаскаль), за исключением США и Канады, где он указывается в дюймах (или сотых долях дюйма) ртутного столба. (Соединенные Штаты и Канада также сообщают о давлении на уровне моря SLP, которое понижается до уровня моря другим методом, в разделе примечаний, а не в международной части кода, в гектопаскалях или миллибарах [5] .Однако в государственных сводках погоды в Канаде давление на уровне моря вместо этого указывается в килопаскалях [1], в то время как стандартная единица давления Министерства окружающей среды Канады такая же [2] [3].) В коде погоды три цифры - это все, что нужно ; десятичные точки и одна или две старшие цифры опускаются: 1013,2 мбар или 101,32 кПа передается как 132; 1000,0 мбар или 100,00 кПа передается как 000; 998,7 мбар или 99,87 кПа передается как 987; и т.д. Самое высокое давление на уровне моря на Земле происходит в Сибири, где Сибирский антициклон часто достигает давления на уровне моря выше 1087.0 мбар. Наименьшее измеряемое давление на уровне моря находится в центрах тропических циклонов.

Изменение атмосферного давления на высоте

Эта пластиковая бутылка была запечатана на высоте примерно 14 000 футов и была раздавлена ​​увеличением атмосферного давления (на 9 000 футов и 1 000 футов), когда она опускалась до уровня моря.

Давление плавно меняется от поверхности Земли до верха мезосферы. Хотя давление меняется в зависимости от погоды, НАСА усреднило условия для всех частей Земли круглый год.Ниже приводится список значений атмосферного давления (в долях одной атмосферы) с соответствующими средними высотами. Таблица дает приблизительное представление о давлении воздуха на разных высотах.

0 1 0 1
доля 1 атм Средняя высота
(м) (фут)
1 0 0
1/2 5,486 18000
1 / e 7,915 25,970
1/3 8,376 27,480
1/10 16,132 52,926 52,926
1/1000 48,467 159,013
1/10000 69,464 227,899
1/100000 86,282 283,076 Высота 86,282 283,076 Высота представляют собой два разных уравнения для вычисления среднего давления на различных режимах высоты ниже 86 км (53 миль; 280 000 футов).Уравнение 1 используется, когда значение стандартного градиента температуры не равно нулю, а уравнение 2 используется, когда стандартное значение градиента температуры равно нулю.

Уравнение 1:

Уравнение 2:

где

= статическое давление (паскали, Па)
= стандартная температура (кельвин, К)
= стандартная скорость отклонения температуры ( кельвин на метр, К / м)
= Высота над уровнем моря (метры, м)
= Высота внизу слоя b (метры; e.г, = 11000 м)
= Универсальная газовая постоянная: 8,31432 Нм / (К · моль)
= Стандартная сила тяжести (9,80665 м / с 2 )
= Молярная масса земного воздуха (0,0289644 кг / моль)

Или преобразовано в британские единицы измерения: [6]

, где

= статическое давление (дюймы ртутного столба, дюймы рт. Ст.)
= стандартная температура ([[кельвин] с, К)
= стандартный температурный интервал скорость (кельвин на фут, К / фут)
= Высота над уровнем моря (футы, футы)
= Высота в нижней части слоя b (футы; e.g., = 36,089 футов)
= Универсальная газовая постоянная; с использованием футов, кельвинов и (СИ) моль: 8,9494596 × 10 4 gft 2 / (моль · Ks 2 )
= стандартная сила тяжести (32,17405 фут / с 2 )
= молярная масса Земной воздух (0,0289644 кг / моль)

Значение индекса b находится в диапазоне от 0 до 6 в соответствии с каждым из семи последовательных слоев атмосферы, показанных в таблице ниже. В этих уравнениях g 0 , M и R * являются однозначными константами, а P, L, T, и h являются многозначными константами в соответствии с с таблицей ниже.(Обратите внимание, что согласно условию в этом уравнении, L 0 , скорость градиента тропосферы, отрицательная.) Следует отметить, что значения, используемые для M, g 0 , и в соответствии со Стандартной атмосферой США, 1976 г., и что значение для, в частности, не согласуется со стандартными значениями для этой постоянной. [7] Опорное значение для Р б для б = 0 является определенное значение уровня моря, Р 0 = паскаль или сто одна тысяча триста двадцать пять 29.92126 дюймов рт. Ст. Значения P b из b = от 1 до b = 6 получены из применения соответствующего члена парных уравнений 1 и 2 для случая, когда: [7]

Подстрочный индекс b Высота над уровнем моря Статическое давление Стандартная температура
(K)
Интервал отклонения температуры
(м) (фут) (паскали) (дюйм рт. Ст.) (К / м) (К / фут)
0 0 0 101325 29.92126 288,15 -0,00649 -0,0019812
1 11,000 36,089 22632 6,083245 216,69 5474 1,616734 216,65 0,001 0,0003048
3 32,000 104,987 868 0.2563258 228,65 0,0028 0,00085344
4 47,000 154,199 110 0,0327505 270,65 270,65 0,01976704 270,65 -0,0028 -0,00085344
6 71,000 232,940 4 0.00116833 214,65 -0,002 -0,0006097

Местное изменение атмосферного давления

Атмосферное давление на Земле сильно различается, и эти изменения важны для изучения погоды и климата. См. «Система давления», чтобы узнать о влиянии колебаний давления воздуха на погоду.

Атмосферное давление показывает суточный (дважды в день) цикл, вызванный глобальными атмосферными приливами. Этот эффект наиболее силен в тропических зонах с амплитудой в несколько миллибар и почти нулевой в полярных областях.Эти вариации имеют два наложенных друг на друга цикла, циркадный (24 часа) цикл и полусиркадный (12 часов) цикл.

Рекорды атмосферного давления

Самое высокое атмосферное давление, когда-либо зарегистрированное на Земле, составило 32,01 дюйма, измеренное в Агате, СССР, 31 декабря 1968 года. Агата расположена на севере Сибири. Погода была ясная и очень холодная, с температурой от -40 ° до -58 °.

Самое низкое давление, когда-либо измеренное, составило 25,69 дюйма, установленное 12 октября 1979 года во время окончания тайфуна в западной части Тихого океана.Измерения основывались на инструментальных наблюдениях с самолета-разведчика.

Атмосферное давление на основе высоты воды

Атмосферное давление часто измеряется с помощью ртутного барометра, а высота около 760 миллиметров (30 дюймов) ртутного столба часто используется для иллюстрации (и измерения) атмосферного давления. Однако, поскольку ртуть не является веществом, с которым люди обычно контактируют, вода часто обеспечивает более интуитивный способ визуализировать давление одной атмосферы.

Одна атмосфера (101,325 кПа или 14,7 фунт / кв. Дюйм) - это величина давления, при которой вода может подниматься примерно на 10,3 м (34 фута). Таким образом, ныряльщик на глубине 10,3 м под водой испытывает давление около 2 атмосфер (1 атм воздуха плюс 1 атм воды). Это также максимальная высота, на которую может быть поднят столб воды путем всасывания.

Низкое давление, такое как линии природного газа, иногда указывается в дюймах водяного столба, обычно записывается как водяного столба. (водяной столб) или W.G. (дюймы водяного столба).Типичный газовый бытовой прибор рассчитан максимум на 14 Вт. что составляет примерно 0,034 атмосферы.

Непрофессиональные барометры, как правило, представляют собой анероидные барометры или тензодатчики. См. измерение давления для описания барометров.

Температура кипения воды

Вода кипит примерно при 100 ° C (212 ° F) при атмосферном давлении. Точка кипения - это температура, при которой давление пара равно атмосферному давлению вокруг воды. [M.N. Берберан-Сантос, Э. Бодунов, Л. Поглиани, О барометрической формуле. Am. J. Phys. 65 (5), 404-412 (1997)]

Ссылки

  • Военный стандарт Министерства обороны США 810E
  • Burt, Christopher C., (2004). Экстремальная погода, руководство и книга рекордов . W. W. Norton & Company ISBN 0-393-32658-6
  • Стандартная атмосфера США, 1962 г. , Типография правительства США, Вашингтон, округ Колумбия, 1962 г.

Внешние ссылки

Эксперименты

.

Смотрите также